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Chaos
Definition [Devaney (1989)]

Let V be a set and f : V → V a map on this set.

We say that f is chaotic on V if

1. f has sensitive dependence on initial conditions.

2. f is topologically transitive.

3. periodic points are dense in V.
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f : V → V has sensitive dependence on initial conditions if 

there exists δ > 0 such that, for any x ∈ V and any 

neighborhood Δ of x, there exist y ∈ Δ and n ≥ 0, such that 

|f n(x)−f n(y)| > δ, where f n denotes n successive 

applications of f.

There exist points arbitrarily close to x which eventually 

separate from x by at least δ under iterations of f. 

Not all points near x need eventually move away from x 

under iteration, but there must be at least one such point 

in every neighborhood of x.



Chaos
2. f is topologically transitive.



Chaos
2. f is topologically transitive.

f : V → V is said to be topologically transitive if for any

pair of open sets U, W ⊂ V there exists n > 0 such that 

f n(U) ∩ W ≠ ∅.



Chaos
2. f is topologically transitive.

f : V → V is said to be topologically transitive if for any

pair of open sets U, W ⊂ V there exists n > 0 such that 

f n(U) ∩ W ≠ ∅.

This implies the existence of points which eventually 

move under iteration from one arbitrarily small 

neighborhood to any other. 



Chaos
2. f is topologically transitive.

f : V → V is said to be topologically transitive if for any

pair of open sets U, W ⊂ V there exists n > 0 such that 

f n(U) ∩ W ≠ ∅.

This implies the existence of points which eventually 

move under iteration from one arbitrarily small 

neighborhood to any other. 

Consequently, the dynamical system cannot be 

decomposed into two disjoint invariant open sets. 
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Chaos
A chaotic system possesses three ingredients:

1. Unpredictability because of the sensitive 

dependence on initial conditions

2. Indecomposability because it cannot be 

decomposed into noninteracting subsystems due 

to topological transitivity

3. An element of regularity because it has periodic 

points which are dense.

Usually, in physics and applied sciences, people use 

the notion of chaos in relation to the sensitive 

dependence on initial conditions.
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Autonomous Hamiltonian systems
Consider an N degree of freedom autonomous

Hamiltonian system having a Hamiltonian function of the

form:

H(q1,q2,…,qN, p1,p2,…,pN)

The time evolution of an orbit (trajectory) with initial

condition

P(0)=(q1(0), q2(0),…,qN(0), p1(0), p2(0),…,pN(0))

positions momenta

is governed by the Hamilton’s equations of motion

 

 

i i

i i

d p d qH H
= -    ,    =

d t q d t p

Phase space: the 2N dimensional space defined by

variables q1,q2,…,qN, p1,p2,…,pN
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( ) ( )2 2 2 2 2 3

x y

1 1 1
H = p + p + x + y + x y - y

2 2 3

Hamilton’s equations of motion:

i i

i i

d p d qH H
= -   ,  =

d t q d t p

∂ ∂

∂ ∂





 




x

y

x

2 2

y

x = p

y = p

p = -x - 2xy

p = -y - x + y
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Hénon-Heiles system

For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):

x=0, y=0.1, py=0 and x=0, y=-0.25, py=0. 

We perturb both ICs by δpy=10-11 (!) and check the evolution of x
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1 1 1
H = p + p + x + y + x y - y

2 2 3

Orbit Perturbed

t=      100   x= 0.132995718333307644     0.132995718337263064

t=    5000   x= 0.376999283889102310     0.376999283870156576

t=  10000   x=-0.159094583356855224   -0.159094583341260309

t=  50000   x= 0.101992400739955760     0.101992400253961321

t=100000   x=-0.381120533746511780    -0.381120533327258870

t=   100      x= 0.090272817735167835     0.090272821355768668

t=   200      x= 0.295031687482249283     0.295031884858625637

t=   300      x= 0.515226330109450181     0.515225440480693297

t=   400      x= 0.063441889347425867     0.061359558551008345

t=   500      x= 0.078357719290523528    -0.270811022674341095
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Poincaré Surface of Section (PSS)

In general we can assume a PSS of the form qN+1=constant. Then only

variables q1,q2,…,qN,p1,p2,…,pN are needed to describe the evolution

of an orbit on the PSS, since pN+1 can be found from the Hamiltonian.

We can constrain the

study of an N+1

degree of freedom

Hamiltonian system

to a 2N-dimensional

subspace of the

general phase space.

In this sense an N+1 degree of freedom Hamiltonian

system corresponds to a 2N-dimensional map.

Lieberman & Lichtenberg, 1992, Regular and Chaotic Dynamics, Springer.
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Hénon-Heiles system: PSS (x=0)

Chaotic motion

Chaotic sea

Regular motion

Island of stability
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Computation of the PSS

PSS: xM-A=0

tn,  xM(tn)-A<0

tn+τ,  xM(tn+τ)-A>0

tn+2τ,  xM(tn+2τ)-A>0

Integration step 

(for variable xM) 

is T=A-xM(tn). 

t=tc,  xM(tc)-A=0 !
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Computation of the PSS

Both sets of differential equations 

can be written in a common form 

(Hénon 1982), where τ is the 

integration variable: τ=t, 

Κ=1

τ=xM, 

Κ=1/fM(x1, x2, …, xM)



Chaos detection techniques

• Based on the visualization of orbits

✓ Poincaré Surface of Section (PSS)

✓ the color and rotation (CR) method

✓ the 3D phase space slices (3PSS) technique 



The color and rotation (CR) method
For 3 degree of freedom Hamiltonian systems and 4 dimensional symplectic

maps:

We consider the 3D projection of the PSS and use color to indicate the 4th

dimension.

Katsanikas M and Patsis P A 2011  Int. J. Bif. Chaos 21 467



The 3D phase space slices (3PSS) 

technique
For 3 degree of freedom Hamiltonian systems and 4 dimensional symplectic

maps:

We consider thin 3D phase space slices of the 4D phase space (e.g. |p2| ≤ ε)

and present intersections of orbits with these slices.

Richter et al. 2014  Phys. Rev. E 89 022902



Chaos detection techniques

• Based on the visualization of orbits

✓ Poincaré Surface of Section (PSS)

✓ the color and rotation (CR) method

✓ the 3D phase space slices (3PSS) technique 

• Based on the numerical analysis of orbits

✓ Frequency Map Analysis

✓ 0-1 test



Frequency Map Analysis
Create Frequency Maps by computing the fundamental frequencies of orbits.

Regular motion: The computed frequencies do not vary in time

Chaotic motion: The computed frequencies vary in time

Papaphilippou Y and Laskar J 1998 Astron. Astrophys. 329 451

Steier C et al. 2002 Phys. Rev. E 65 056506



Chaos detection techniques

• Based on the visualization of orbits

✓ Poincaré Surface of Section (PSS)

✓ the color and rotation (CR) method

✓ the 3D phase space slices (3PSS) technique 

• Based on the numerical analysis of orbits

✓ Frequency Map Analysis

✓ 0-1 test

• Chaos indicators based on the evolution of deviation vectors from 

a given orbit

✓ Maximum Lyapunov Exponent

✓ Fast Lyapunov Indicator (FLI) and Orthogonal Fast Lyapunov

Indicators (OFLI and OFLI2)  

✓ Mean Exponential Growth Factor of Nearby Orbits (MEGNO)

✓ Relative Lyapunov Indicator (RLI)

✓ Smaller ALignment Index  – SALI

✓ Generalized ALignment Index  – GALI



Variational Equations

We use the notation x = (q1,q2,…,qN,p1,p2,…,pN)T. The

deviation vector from a given orbit is denoted by

v = (δx1, δx2,…,δxn)T , with n=2N

The time evolution of v is given by 

the so-called variational equations:

 
dv

= -J P  v
dt

  i, j = 1 , 2 , , n
  
 

  

2
N N

i j

N N i j

0 -I H
J =   ,  P =

I 0 x x

where

Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93
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Hamilton’s equations of motion:

( ) ( )2 2 2 2 2 3

x y

1 1 1
H = p + p + x + y + x y - y

2 2 3

i i

i i

dp dqH H
= -   ,  =

dt q dt p

∂ ∂

∂ ∂





 




x
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Symplectic Maps
Consider an 2N-dimensional symplectic map T. In this

case we have discrete time.

This is an area-preserving map whose Jacobian matrix

satisfies

 T

2 N 2 NM J M = J

   
   
 
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x x xM = =
x
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x x x



Symplectic Maps

The evolution of an orbit with initial condition

P(0)=(x1(0), x2(0),…,x2N(0))

is governed by the equations of map T

P(i+1)=T P(i)  ,  i=0,1,2,… 

The evolution of an initial deviation vector

v(0) = (δx1(0), δx2(0),…, δx2N(0))

is given by the corresponding tangent map




 i

T
v(i + 1 ) = v(i)  , i = 0 , 1 , 2 ,

P

Consider an 2N-dimensional symplectic map T. In this

case we have discrete time.
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Lyapunov Exponents

Roughly speaking, the Lyapunov exponents of a given

orbit characterize the mean exponential rate of divergence

of trajectories surrounding it.

Consider an orbit in the 2N-dimensional phase space with

initial condition x(0) and an initial deviation vector from it

v(0). Then the mean exponential rate of divergence is:

→ t

v( t )1
σ (x (0 ) , v(0 ) ) = l im ln

t v(0 )

We commonly use the Euclidian norm and set

d(0)=||v(0)||=1



Lyapunov Exponents

There exists an M-

dimensional basis {êi} of v

such that for any v, σ takes

one of the M (possibly

nondistinct) values

σi(x(0)) = σ(x(0), êi)

which are the Lyapunov

exponents.

In autonomous Hamiltonian systems the M exponents are ordered in 

pairs of opposite sign numbers and two of them are 0.

Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93



Computation of the Maximum 

Lyapunov Exponent
Due to the exponential growth of v(t) (and of d(t)=||v(t)||)

we renormalize v(t) from time to time.

Then the Maximum Lyapunov exponent is computed as

n → 


n

1 i

i = 1

1
σ = lim ln d

n



Maximum Lyapunov Exponent

If we start with more than one linearly independent

deviation vectors they will align to the direction defined by

the largest Lyapunov exponent for chaotic orbits.

σ1=0: Regular motion

σ1≠0: Chaotic motion
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Maximum Lyapunov Exponent

Hénon-Heiles system: Chaotic orbit and Regular orbit



The 

Smaller ALignment Index  

(SALI) 

method



Definition of the SALI
We follow the evolution in time of two different initial

deviation vectors (v1(0), v2(0)), and define the SALI (Ch.S.

2001, J. Phys. A) as:

When the two vectors become collinear

SALI(t) → 0

 ˆ ˆ ˆ ˆ
1 2 1 2

S A L I ( t ) = m i n v ( t ) + v ( t ) , v ( t ) - v ( t )

ˆ 1

1

1

v (t)
v (t) =

v (t)

where



Behavior of the SALI for chaotic motion

For chaotic orbits the two initially

different deviation vectors tend to

coincide with the direction defined

by the maximum Lyapunov

exponent.



Behavior of the SALI for chaotic motion

For chaotic orbits the two initially

different deviation vectors tend to

coincide with the direction defined

by the maximum Lyapunov

exponent.

P(0)

P(t)



Behavior of the SALI for chaotic motion

For chaotic orbits the two initially

different deviation vectors tend to

coincide with the direction defined

by the maximum Lyapunov

exponent.

ˆ
1

v ( 0 )

ˆ
2

v ( 0 )

P(0)

P(t)



2
v ( t )

1
v ( t )

Behavior of the SALI for chaotic motion

For chaotic orbits the two initially

different deviation vectors tend to

coincide with the direction defined

by the maximum Lyapunov

exponent.

ˆ
1

v ( 0 )

ˆ
2

v ( 0 )

P(0)

P(t)



2
v ( t )

1
v ( t )

Behavior of the SALI for chaotic motion

For chaotic orbits the two initially

different deviation vectors tend to

coincide with the direction defined

by the maximum Lyapunov

exponent.

ˆ
1

v ( 0 )

ˆ
2

v ( 0 )

ˆ
2

v ( t )

ˆ
1

v ( t )

P(0)

P(t)



2
v ( t )

1
v ( t )

Behavior of the SALI for chaotic motion

For chaotic orbits the two initially

different deviation vectors tend to

coincide with the direction defined

by the maximum Lyapunov

exponent.

ˆ
1

v ( 0 )

ˆ
2

v ( 0 )

ˆ
2

v ( t )

ˆ
1

v ( t )

P(0)

P(t)

SALI(0)



2
v ( t )

1
v ( t )

Behavior of the SALI for chaotic motion

For chaotic orbits the two initially

different deviation vectors tend to

coincide with the direction defined

by the maximum Lyapunov

exponent.

ˆ
1

v ( 0 )

ˆ
2

v ( 0 )

ˆ
2

v ( t )

ˆ
1

v ( t )

P(0)

P(t)

SALI(0)

SALI(t)



Behavior of the SALI for chaotic motion

3
2 2 2 2i
i i 1 2 1 3

i=1

H = (q + p ) + q q + q q
2




We test the validity of the approximation SALI~e-(σ1-σ2)t (Ch.S.,
Antonopoulos, Bountis, Vrahatis, 2004, J. Phys. A) for a chaotic orbit
of the 3D Hamiltonian

with ω1=1, ω2=1.4142, ω3=1.7321, Η=0.09

σ1≈0.037

σ2≈0.011

slope=-(σ1-σ2)/ln(10)
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Regular motion occurs on a torus and two different initial

deviation vectors become tangent to the torus, generally

having different directions.
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Applications – Hénon-Heiles system

For E=1/8 we consider the orbits with initial conditions:

Regular orbit, x=0, y=0.55, px=0.2417, py=0

Chaotic orbit, x=0, y=-0.016, px=0.49974, py=0

Chaotic orbit, x=0, y=-0.01344, px=0.49982, py=0

As an example, we consider the 2D Hénon-Heiles system:



Applications – Hénon-Heiles system

lo
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Applications – 4D map
1 1 2

2 2 1 2 1 2 3 4

3 3 4

4 4 3 4 1 2 3 4

x = x + x

x = x  -  sin(x  + x ) -  [1 - cos(x  + x  + x  + x )] 
(mod 2 )

x = x  + x

x = x  -  sin(x  + x ) -  [1 - cos(x  + x  + x  + x )] 
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For ν=0.5, κ=0.1, μ=0.1 we consider the orbits:

regular orbit C with initial conditions x1=0.5, x2=0, x3=0.5, x4=0.

chaotic orbit D with initial conditions x1=3, x2=0, x3=0.5, x4=0.
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For ν=0.5, κ=0.1, μ=0.1 we consider the orbits:

regular orbit C with initial conditions x1=0.5, x2=0, x3=0.5, x4=0.

chaotic orbit D with initial conditions x1=3, x2=0, x3=0.5, x4=0.
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The 

Generalized ALignment Indices  

(GALIs) 

method



Definition of the Generalized 

Alignment Index (GALI)
SALI effectively measures the ‘area’ of the parallelogram

formed by the two deviation vectors.
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Definition of the GALI

In the case of an N degree of freedom Hamiltonian system or

a 2N symplectic map we follow the evolution of

k deviation vectors with 2≤k≤2N, 

and define (Ch.S., Bountis, Antonopoulos, 2007, Physica D)

the Generalized Alignment Index (GALI) of order k :

ˆ ˆ ˆ  k 1 2 kG A L I ( t ) = v ( t )   v ( t )  . . .  v ( t )

ˆ 1

1

1

v (t)
v (t) =

v (t)

where



Behavior of the GALIk for chaotic motion

GALIk (2≤k≤2N) tends exponentially to zero with

exponents that involve the values of the first k largest

Lyapunov exponents σ1, σ2, …, σk :

 1 2 1 3 1 k- ( σ - σ ) + ( σ - σ ) + . . . + ( σ - σ ) t

kG A L I ( t )   e

The above relation is valid even if some Lyapunov
exponents are equal, or very close to each other.



Behavior of the GALIk for chaotic motion

N particles Fermi-Pasta-Ulam (FPU) system:

with fixed boundary conditions, N=8 and β=1.5.

( ) ( )
 
  

 
N N

2 42

i i+1 i i+1 i

i=1 i=0

1 1 β
H = p + q - q + q - q

2 2 4



Behavior of the GALIk for regular motion
If the motion occurs on an s-dimensional torus with sN then the
behavior of GALIk is given by (Ch.S., Bountis, Antonopoulos, 2008,
Eur. Phys. J. Sp. Top.):


  










k k -s

2(k -N)

constant if 2 k s

1
GALI (t)  if s < k 2N - s

t

1
if 2N - s < k 2N 

t



while in the common case with s=N we have :

 






k

2(k - N )

con stan t if 2 k N

G A L I (t)  1
if N < k 2N

t





Behavior of the GALIk for regular motion

N=8 FPU system



A time-dependent 

Hamiltonian system



Barred galaxies
NGC 1433 NGC 2217



Barred galaxy model 
The 3D bar rotates around its short z-axis (x: long axis and y: intermediate). The

Hamiltonian that describes the motion for this model is:

2 2 21
( ) ( , , ) ( )

2
x y z b y xH p p p V x y z xp yp Energy= + + + − − 

This model consists of the superposition of potentials describing an axisymmetric

part and a bar component of the galaxy (Manos, Bountis, Ch.S., 2013, J. Phys. A). 

a) Axisymmetric component:

i) Plummer sphere: ii) Miyamoto–Nagai disc:
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Time-dependent barred galaxy model 
The 3D bar rotates around its short z-axis (x: long axis and y: intermediate). The

Hamiltonian that describes the motion for this model is:

2 2 2 ( , ,
1

( ) ( )
2

, )x y z b y xV x y z tH p p p xp yp Energy= + + + − − 

This model consists of the superposition of potentials describing an axisymmetric

part and a bar component of the galaxy (Manos, Bountis, Ch.S., 2013, J. Phys. A). 

a) Axisymmetric component:

i) Plummer sphere: ii) Miyamoto–Nagai disc:
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PSS (t = 1250)

PSS (t = 3750)

PSS (t = 6250)

PSS (t = 8750)

PSS (t = 11250)

Time-dependent 2D 

barred galaxy model 



Time-dependent 3D barred galaxy model 

Interplay between chaotic and regular motion



Numerical Integration of

Equations of Motion 

and

Variational Equations



Efficient integration of variational 

equations
Consider an N degree of freedom autonomous
Hamiltonian system having a Hamiltonian function of the
form:

The time evolution of an orbit is governed by the

Hamilton’s equations of motion

with

being respectively the coordinates and momenta.



Variational Equations

The time evolution of a deviation vector

from a given orbit is governed by the variational
equations:

where

The variational equations are the equations of motion of
the time dependent tangent dynamics Hamiltonian (TDH)
function



Autonomous Hamiltonian systems

Hamilton’s equations of motion:

Variational equations:

As an example, we consider the Hénon-Heiles system:



Integration of the variational equations

We use two general-purpose numerical

integration algorithms for the integration of

the whole set of equations:

a) the DOP853 integrator (Hairer et al. 1993,

http://www.unige.ch/~hairer/software.html), which is an explicit non-symplectic

Runge-Kutta integration scheme of order 8,

b) the TIDES integrator (Barrio 2005, http://gme.unizar.es/software/tides),

which is based on a Taylor series approximation

for the solution of system



Symplectic Integration schemes
Formally the solution of the Hamilton’s equations of motion can be written
as:

where     is the full coordinate vector and LH the Poisson operator:X

     
 
     


N

H

j=1 j j j j

H f H f
L f = -

p q q p

 


  H

n
tLn

H H

n 0

dX t
= H, X = L X  X(t) = L X = e X

dt n!

H A B i A i B

j
τL τ(L +L ) c τL d τL

i=1

e = e e e

If the Hamiltonian H can be split into two integrable parts as H=A+B, a
symplectic scheme for integrating the equations of motion from time t to
time t+τ consists of approximating the operator byHτL

e

for appropriate values of constants ci, di. 

So the dynamics over an integration time step τ is described by 
a series of successive acts of Hamiltonians A and B. 



Symplectic Integrator SAΒA2C
We use a symplectic integration scheme developed for Hamiltonians of the 
form H=A+εB where A, B are both integrable and ε a parameter. The 
operator         can be approximated by the symplectic integrator (Laskar 

& Robutel, 2001, Cel. Mech. Dyn. Astr.):

HτL
e

1 εB 1 εB1 A 2 A 1 Ad τL d τLc τL c τL c τL

2SABA = e  e   e  e  e
with 1 2 1

(3 - 3) 3 1
c = ,  c = , d =  .

6 3 2

The integrator has only positive steps and its error is of order 

O(τ4ε+τ2ε2).

In the case where A is quadratic in the momenta and B depends only on 

the positions the method can be improved by introducing a corrector 

C={{A,B},B}, having a small negative step:   
3 2

A,B ,B

c
-τ ε L

2e
with

Thus the full integrator scheme becomes: SABAC2 = C (SABA2) C and its

error is of order O(τ4ε+τ4ε2).

)(2 - 3
c = .

24



Tangent Map (TM) Method

We apply the SABAC2 integrator scheme to the Hénon-Heiles system 

(with ε=1) by using the splitting:

with a corrector term which corresponds to the Hamiltonian function:

Use symplectic integration schemes for the whole set of equations (Ch.S., 

Gerlach, 2010, PRE) 

We approximate the dynamics by the act of Hamiltonians A, B and C, 

which correspond to the symplectic maps:



Tangent Map (TM) Method

The system of the Hamilton’s equations of motion and the variational equations 

is split into two integrable systems which correspond to Hamiltonians A and B. 

Let
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Tangent Map (TM) Method
So any symplectic integration scheme used for solving the Hamilton’s

equations of motion, which involves the action of Hamiltonians A, B and

C, can be extended in order to integrate simultaneously the variational

equations.
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