Chaotic dynamics of Hamiltonian systems

Haris Skokos Nonlinear Dynamics and Chaos Group Department of Mathematics and Applied Mathematics University of Cape Town Cape Town, South Africa

> E-mail: haris.skokos@uct.ac.za URL: http://math_research.uct.ac.za/~hskokos/

Outline

- Chaos
- Autonomous Hamiltonian systems: Example Hénon-Heiles system
- Regular vs Chaotic motion
- Visualization of chaos: Poincaré Surface of Section (PSS)
- Chaos Indicators
 - ✓ Variational equations and Tangent map
 - ✓ Lyapunov exponents
 - ✓ Smaller ALignment Index SALI
 - ✓ Generalized ALignment Index GALI
- Efficient numerical integration methods
 - ✓ Symplectic integrators
 - ✓ The tangent map (TM) method

Definition [Devaney (1989)] Let V be a set and $f: V \rightarrow V$ a map on this set. We say that f is chaotic on V if

Definition [Devaney (1989)] Let V be a set and $f: V \rightarrow V$ a map on this set. We say that f is chaotic on V if

1. **f** has sensitive dependence on initial conditions.

Definition [Devaney (1989)] Let V be a set and $f: V \rightarrow V$ a map on this set. We say that f is chaotic on V if

- 1. **f has sensitive dependence on initial conditions.**
- 2. **f is topologically transitive.**

Definition [Devaney (1989)] Let V be a set and $f: V \rightarrow V$ a map on this set. We say that f is chaotic on V if

- 1. **f has sensitive dependence on initial conditions.**
- 2. **f is topologically transitive.**
- 3. periodic points are dense in V.

1. f has sensitive dependence on initial conditions.

1. f has sensitive dependence on initial conditions.

f : *V* → *V* has sensitive dependence on initial conditions if there exists $\delta > 0$ such that, for any **x** ∈ *V* and any neighborhood Δ of **x**, there exist **y** ∈ Δ and $n \ge 0$, such that $|\mathbf{f}^{n}(\mathbf{x})-\mathbf{f}^{n}(\mathbf{y})| > \delta$, where \mathbf{f}^{n} denotes *n* successive applications of **f**.

1. f has sensitive dependence on initial conditions.

f : *V* → *V* has sensitive dependence on initial conditions if there exists $\delta > 0$ such that, for any **x** ∈ *V* and any neighborhood Δ of **x**, there exist **y** ∈ Δ and $n \ge 0$, such that $|\mathbf{f}^{n}(\mathbf{x})-\mathbf{f}^{n}(\mathbf{y})| > \delta$, where \mathbf{f}^{n} denotes *n* successive applications of **f**.

There exist points arbitrarily close to \mathbf{x} which eventually separate from \mathbf{x} by at least δ under iterations of \mathbf{f} .

1. f has sensitive dependence on initial conditions.

f : *V* → *V* has sensitive dependence on initial conditions if there exists $\delta > 0$ such that, for any **x** ∈ *V* and any neighborhood Δ of **x**, there exist **y** ∈ Δ and $n \ge 0$, such that $|\mathbf{f}^{n}(\mathbf{x})-\mathbf{f}^{n}(\mathbf{y})| > \delta$, where \mathbf{f}^{n} denotes *n* successive applications of **f**.

There exist points arbitrarily close to \mathbf{x} which eventually separate from \mathbf{x} by at least δ under iterations of \mathbf{f} .

Not all points near \mathbf{x} need eventually move away from \mathbf{x} under iteration, but there must be at least one such point in every neighborhood of \mathbf{x} .

2. f is topologically transitive.

2. f is topologically transitive.

f : *V* → *V* is said to be *topologically transitive* if for any pair of open sets *U*, *W* ⊂ *V* there exists *n* > 0 such that **f**^{*n*}(*U*) ∩ *W* ≠ Ø.

2. f is topologically transitive.

f : *V* → *V* is said to be *topologically transitive* if for any pair of open sets *U*, *W* ⊂ *V* there exists *n* > 0 such that **f**^{*n*}(*U*) ∩ *W* ≠ Ø.

This implies the existence of points which eventually move under iteration from one arbitrarily small neighborhood to any other.

2. f is topologically transitive.

f : *V* → *V* is said to be *topologically transitive* if for any pair of open sets *U*, *W* ⊂ *V* there exists *n* > 0 such that **f** $^{n}(U) \cap W \neq \emptyset$.

This implies the existence of points which eventually move under iteration from one arbitrarily small neighborhood to any other.

Consequently, the dynamical system cannot be decomposed into two disjoint invariant open sets.

A chaotic system possesses three ingredients:

A chaotic system possesses three ingredients:

1. Unpredictability because of the sensitive dependence on initial conditions

A chaotic system possesses three ingredients:

- **1. Unpredictability** because of the sensitive dependence on initial conditions
- 2. Indecomposability because it cannot be decomposed into noninteracting subsystems due to topological transitivity

A chaotic system possesses three ingredients:

- **1. Unpredictability** because of the sensitive dependence on initial conditions
- 2. Indecomposability because it cannot be decomposed into noninteracting subsystems due to topological transitivity
- **3.** An element of regularity because it has periodic points which are dense.

A chaotic system possesses three ingredients:

- **1. Unpredictability** because of the sensitive dependence on initial conditions
- 2. Indecomposability because it cannot be decomposed into noninteracting subsystems due to topological transitivity
- **3.** An element of regularity because it has periodic points which are dense.

Usually, in physics and applied sciences, people use the notion of chaos in relation to the sensitive dependence on initial conditions.

Autonomous Hamiltonian systems

Consider an N degree of freedom autonomous Hamiltonian system having a Hamiltonian function of the form: positions momenta

$$H(\overrightarrow{q_1,q_2,\ldots,q_N},\overrightarrow{p_1,p_2,\ldots,p_N})$$

Autonomous Hamiltonian systems

Consider an N degree of freedom autonomous Hamiltonian system having a Hamiltonian function of the form: positions momenta

$$H(q_1,q_2,...,q_N, p_1,p_2,...,p_N)$$

The time evolution of an orbit (trajectory) with initial condition

 $P(0)=(q_1(0), q_2(0), \dots, q_N(0), p_1(0), p_2(0), \dots, p_N(0))$

is governed by the Hamilton's equations of motion

$$\frac{\mathbf{d} \mathbf{p}_{i}}{\mathbf{d} \mathbf{t}} = -\frac{\partial \mathbf{H}}{\partial \mathbf{q}_{i}} , \quad \frac{\mathbf{d} \mathbf{q}_{i}}{\mathbf{d} \mathbf{t}} = \frac{\partial \mathbf{H}}{\partial \mathbf{p}_{i}}$$

Autonomous Hamiltonian systems

Consider an N degree of freedom autonomous Hamiltonian system having a Hamiltonian function of the form: positions momenta

$$H(q_1,q_2,...,q_N,p_1,p_2,...,p_N)$$

The time evolution of an orbit (trajectory) with initial condition

 $P(0)=(q_1(0), q_2(0), \dots, q_N(0), p_1(0), p_2(0), \dots, p_N(0))$

is governed by the Hamilton's equations of motion

$$\frac{d \mathbf{p}_{i}}{d \mathbf{t}} = -\frac{\partial \mathbf{H}}{\partial \mathbf{q}_{i}} , \quad \frac{d \mathbf{q}_{i}}{d \mathbf{t}} = \frac{\partial \mathbf{H}}{\partial \mathbf{p}_{i}}$$

Phase space: the 2N dimensional space defined by variables $q_1, q_2, \dots, q_N, p_1, p_2, \dots, p_N$

Example (Hénon-Heiles system)

Example (Hénon-Heiles system) H = $\frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}(x^2 + y^2) + x^2y + \frac{1}{3}y^3$

Example (Hénon-Heiles system) $H = \frac{1}{2} (p_{x}^{2} + p_{y}^{2}) + \frac{1}{2} (x^{2} + y^{2}) + x^{2}y - \frac{1}{3}y^{3}$

THE ASTRONOMICAL JOURNAL

VOLUME 69, NUMBER 1

FEBRUARY 1964

The Applicability of the Third Integral Of Motion: Some Numerical Experiments

MICHEL HÉNON* AND CARL HEILES

Princeton University Observatory, Princeton, New Jersey (Received 7 August 1963)

The problem of the existence of a third isolating integral of motion in an axisymmetric potential is investigated by numerical experiments. It is found that the third integral exists for only a limited range of initial conditions.

Example (Hénon-Heiles system) $H = \frac{1}{2} (p_{x}^{2} + p_{y}^{2}) + \frac{1}{2} (x^{2} + y^{2}) + x^{2}y + \frac{1}{3}y^{3}$

THE ASTRONOMICAL JOURNAL

VOLUME 69, NUMBER 1

FEBRUARY 1964

The Applicability of the Third Integral Of Motion: Some Numerical Experiments

MICHEL HÉNON* AND CARL HEILES

Princeton University Observatory, Princeton, New Jersey (Received 7 August 1963)

The problem of the existence of a third isolating integral of motion in an axisymmetric potential is investigated by numerical experiments. It is found that the third integral exists for only a limited range of initial conditions.

Hamilton's equations of motion:

$$\frac{d p_{i}}{d t} = -\frac{\partial H}{\partial q_{i}} , \frac{d q_{i}}{d t} = \frac{\partial H}{\partial p_{i}}$$

Example (Hénon-Heiles system) $H = \frac{1}{2} (p_{x}^{2} + p_{y}^{2}) + \frac{1}{2} (x^{2} + y^{2}) + x^{2}y + \frac{1}{3}y^{3}$

THE ASTRONOMICAL JOURNAL

VOLUME 69, NUMBER 1

FEBRUARY 1964

The Applicability of the Third Integral Of Motion: Some Numerical Experiments

MICHEL HÉNON* AND CARL HEILES

Princeton University Observatory, Princeton, New Jersey (Received 7 August 1963)

The problem of the existence of a third isolating integral of motion in an axisymmetric potential is investigated by numerical experiments. It is found that the third integral exists for only a limited range of initial conditions.

ons of motion: $\frac{d p_{i}}{d t} = -\frac{\partial H}{\partial q_{i}}, \quad \frac{d q_{i}}{d t} = \frac{\partial H}{\partial p_{i}} \implies \begin{cases} \dot{\mathbf{x}} = \mathbf{p}_{\mathbf{x}} \\ \dot{\mathbf{y}} = \mathbf{p}_{\mathbf{y}} \\ \dot{\mathbf{p}}_{\mathbf{x}} = -\mathbf{x} - 2\mathbf{x}\mathbf{y} \\ \dot{\mathbf{p}}_{\mathbf{y}} = -\mathbf{y} - \mathbf{x}^{2} + \mathbf{y}^{2} \end{cases}$ Hamilton's equations of motion:

Regular vs Chaotic orbits Hénon-Heiles system $H = \frac{1}{2} (p_x^2 + p_y^2) + \frac{1}{2} (x^2 + y^2) + x^2 y \cdot \frac{1}{3} y^3$

Regular vsChaotic orbitsHénon-Heiles system $H = \frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}(x^2 + y^2) + x^2y - \frac{1}{3}y^3$

For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):

x=0, y=0.1, p_y**=0** and **x=0, y=-0.25, p**_y**=0.**

Regular vs Chaotic orbits Hénon-Heiles system $H = \frac{1}{2} \left(p_x^2 + p_y^2 \right) + \frac{1}{2} \left(x^2 + y^2 \right) + x^2 y \cdot \frac{1}{3} y^3$

For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):

x=0, **y=0.1**, **p**_y**=0** and **x=0**, **y=-0.25**, **p**_y**=0**.

We perturb both ICs by $\delta p_v = 10^{-11}$ (!) and check the evolution of x

Regular vsChaotic orbitsHénon-Heiles system $H = \frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}(x^2 + y^2) + x^2y - \frac{1}{3}y^3$

For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):

We perturb both ICs by $\delta p_y = 10^{-11}$ (!) and check the evolution of x <u>Orbit</u> <u>Perturbed</u>

Regular vsChaotic orbitsHénon-Heiles system $H = \frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}(x^2 + y^2) + x^2y - \frac{1}{3}y^3$

For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):

x=0, y=0.1, p_y=0 and **x=0, y=-0.25, p_y=0.**

We perturb both ICs by $\delta p_y = 10^{-11}$ (!) and check the evolution of x <u>Orbit</u> <u>Perturbed</u>

t= 100 x=0.132995718333307644 0.132995718337263064

Regular vs Chaotic orbits Hénon-Heiles system $H = \frac{1}{2} (p_x^2 + p_y^2) + \frac{1}{2} (x^2 + y^2) + x^2 y - \frac{1}{3} y^3$

For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):

$$x=0, y=0.1, p_y=0 and x=0, y=-0.25, p_y=0.$$

We perturb both ICs by $\delta p_y = 10^{-11}$ (!) and check the evolution of x <u>Orbit</u> <u>Perturbed</u>

t= 100 x=0.132995718333307644 0.132995718337263064

 $t = 5000 \quad x = 0.376999283889102310 \quad 0.376999283870156576$

Regular vsChaotic orbitsHénon-Heiles system $H = \frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}(x^2 + y^2) + x^2y - \frac{1}{3}y^3$

For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):

$$x=0, y=0.1, p_y=0 and x=0, y=-0.25, p_y=0.$$

We perturb both ICs by $\delta p_y = 10^{-11}$ (!) and check the evolution of x <u>Orbit</u> <u>Perturbed</u>

t= 100 x=0.132995718333307644 0.132995718337263064

t= 5000 x=0.376999283889102310 0.376999283870156576

t= 10000 x=-0.159094583356855224 -0.159094583341260309

Regular vs Chaotic orbits Hénon-Heiles system $H = \frac{1}{2} (p_x^2 + p_y^2) + \frac{1}{2} (x^2 + y^2) + x^2 y \cdot \frac{1}{3} y^3$

For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):

x=0, **y=0.1**, **p**_y**=0** and **x=0**, **y=-0.25**, **p**_y**=0**.

We perturb both ICs by $\delta p_y = 10^{-11}$ (!) and check the evolution of x <u>Orbit</u> <u>Perturbed</u>

t= 100 x=0.132995718333307644 0.132995718337263064

t= 5000 x=0.376999283889102310 0.376999283870156576

t= 10000 x=-0.159094583356855224 -0.159094583341260309

 $t= 50000 \quad x= 0.101992400739955760 \quad 0.101992400253961321$

Regular vsChaotic orbitsHénon-Heiles system $H = \frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}(x^2 + y^2) + x^2y \cdot \frac{1}{3}y^3$

For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):

x=0, **y=0.1**, **p**_y**=0** and **x=0**, **y=-0.25**, **p**_y**=0**.

We perturb both ICs by $\delta p_y = 10^{-11}$ (!) and check the evolution of x <u>Orbit</u> <u>Perturbed</u>

 $t = 100 \quad x = 0.132995718333307644 \quad 0.132995718337263064$

 $t= 5000 \quad x= 0.376999283889102310 \quad 0.376999283870156576$

 $t= 10000 \quad x=-0.159094583356855224 \quad -0.159094583341260309$

 $t= 50000 \quad x= 0.101992400739955760 \quad 0.101992400253961321$

 $t=100000 \quad x=-0.381120533746511780 \quad -0.381120533327258870$

Regular vs Chaotic orbits Hénon-Heiles system $H = \frac{1}{2} (p_x^2 + p_y^2) + \frac{1}{2} (x^2 + y^2) + x^2 y \cdot \frac{1}{3} y^3$

For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):

x=0, **y=0.1**, **p**_y**=0** and **x=0**, **y=-0.25**, **p**_y**=0**.

We perturb both ICs by $\delta p_y = 10^{-11}$ (!) and check the evolution of x <u>Orbit</u> <u>Perturbed</u>

 $t = 100 \quad x = 0.132995718333307644 \quad 0.132995718337263064$

 $t= 5000 \quad x= 0.376999283889102310 \quad 0.376999283870156576$

t= 10000 x=-0.159094583356855224 -0.159094583341260309

 $t= 50000 \quad x= 0.101992400739955760 \quad 0.101992400253961321$

 $t=100000 \quad x=-0.381120533746511780 \quad -0.381120533327258870$

 $t= 100 \qquad x = 0.090272817735167835 \qquad 0.090272821355768668$

Regular vs Chaotic orbitsHénon-Heiles system $H = \frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}(x^2 + y^2) + x^2y + \frac{1}{3}y^3$ For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs): $x=0, y=0.1, p_y=0$ and $x=0, y=-0.25, p_y=0$.

We perturb both ICs by $\delta p_y = 10^{-11}$ (!) and check the evolution of x <u>Orbit</u> <u>Perturbed</u>

 $t = 100 \quad x = 0.132995718333307644 \quad 0.132995718337263064$

 $t= 5000 \quad x= 0.376999283889102310 \quad 0.376999283870156576$

t= 10000 x=-0.159094583356855224 -0.159094583341260309

 $t= 50000 \quad x= 0.101992400739955760 \quad 0.101992400253961321$

 $t{=}100000 \quad x{=}{-}0.381120533746511780 \quad {-}0.381120533327258870$

 $t= 100 \quad x = 0.090272817735167835 \quad 0.090272821355768668$

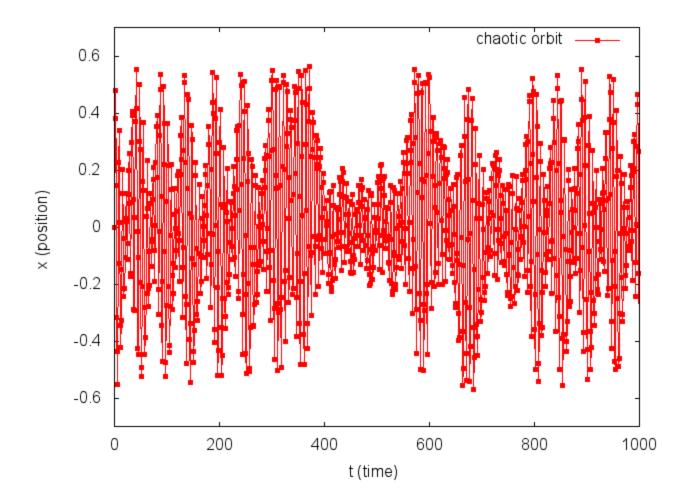
 $t= 200 \qquad x = 0.295031687482249283 \qquad 0.295031884858625637$

Regular vs Chaotic orbits					
Hénon-Heiles system H = $\frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}(x^2 + y^2) + x^2y - \frac{1}{3}y^3$					
For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):					
x=0, y=0.1, p _y =0 and x=0, y=-0.25, p _y =0.					
We perturb both IC	The by $\delta p_y = 10^{-11} (!)$ and check <u>Orbit</u>	the evolution of x <u>Perturbed</u>			
t= 100	x= 0.132995718333307644	0.132995718337263064			
t= 5000	x= 0.376999283889102310	0.376999283870156576			
t= 10000	x=-0.159094583356855224	-0.159094583341260309			
t= 50000	x=0.101992400739955760	0.101992400253961321			
t=100000	x=-0.381120533746511780	-0.381120533327258870			
t= 100	x= 0.090272817735167835	0.0902728 21355768668			
t= 200	x= 0.295031687482249283	0.295031884858625637			
t= 300	x= 0.515226330109450181	0.515225440480693297			

Regular vs Chaotic orbits					
Hénon-Heiles system H = $\frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}(x^2 + y^2) + x^2y - \frac{1}{3}y^3$					
For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):					
$x=0, y=0.1, p_y=0 and x=0, y=-0.25, p_y=0.$					
We perturb both ICs by $\delta p_y = 10^{-11}$ (!) and check the evolution of x <u>Orbit</u> <u>Perturbed</u>					
t= 100	x=0.132995718333307644	0.132995718337263064			
t= 5000	x=0.376999283889102310	0.376999283870156576			
t= 10000	x=-0.159094583356855224	-0.159094583341260309			
t= 50000	x=0.101992400739955760	0.101992400253961321			
t=100000	x=-0.381120533746511780	-0.381120533327258870			
t= 100	x= 0.090272817735167835	0.090272821355768668			
t= 200	x= 0.295031687482249283	0.295031884858625637			
t= 300	x= 0.515226330109450181	0.515225440480693297			
t= 400	x = 0.063441889347425867	0.061359558551008345			

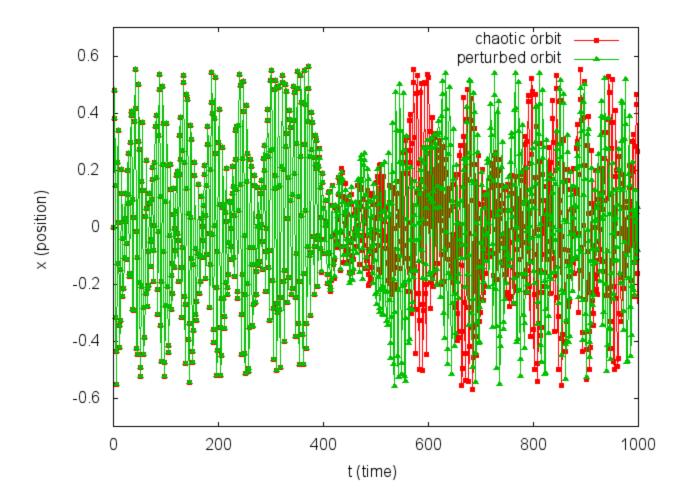
Regular vs Chaotic orbits				
Hénon-Heiles system H = $\frac{1}{2} (p_x^2 + p_y^2) + \frac{1}{2} (x^2 + y^2) + x^2 y - \frac{1}{3} y^3$				
For H=0.125 we get a regular and a chaotic orbit with initial conditions (ICs):				
x=0, y=0.1, p _y =0 and x=0, y=-0.25, p _y =0.				
We perturb both IC	$by \delta p_y = 10^{-11} (0)$	(!) and check t rbit	he evolution of x <u>Perturbed</u>	
t= 100	x=0.13299571	8333307644	0.132995718337263064	
t= 5000	x=0.37699928	338 89102310	0.376999283870156576	
t= 10000	x=-0.15909458	83356855224	-0.159094583341260309	
t= 50000	x=0.10199240	0739955760	0.101992400253961321	
t=100000	x=-0.38112053	33746511780	-0.381120533327258870	
t= 100	x = 0.09027281	17735167835	0.090272821355768668	
t= 200	x=0.29503168	87482249283	0.295031884858625637	
t= 300	x = 0.51522633	30109450181	0.515225440480693297	
t= 400	x = 0.06344188	89347425867	0.061359558551008345	
t= 500	x = 0.07835771	19290523528	-0.270811022674341095	

Regular vs Chaotic orbits Chaotic orbit

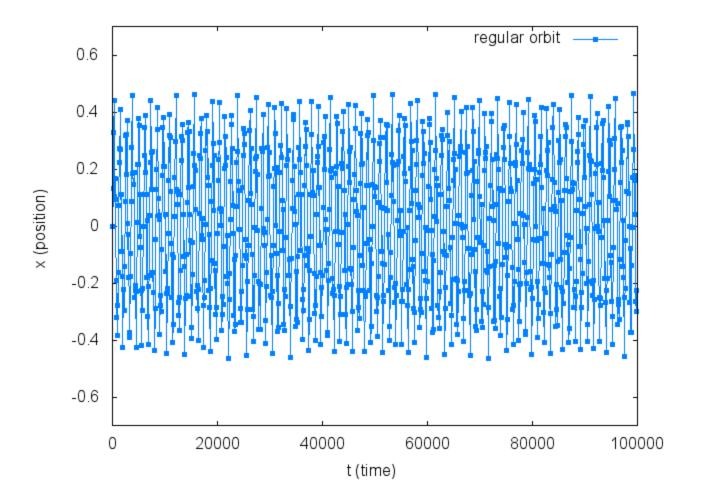


Regular vs Chaotic orbits

Chaotic orbit and its perturbation

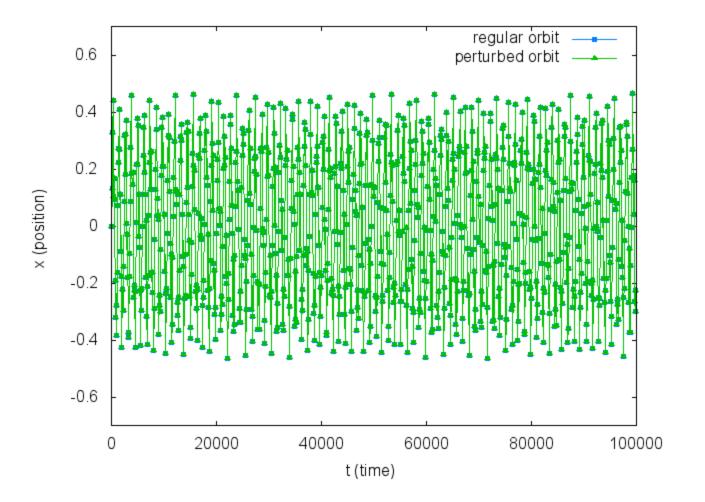


Regular vs Chaotic orbits Regular orbit

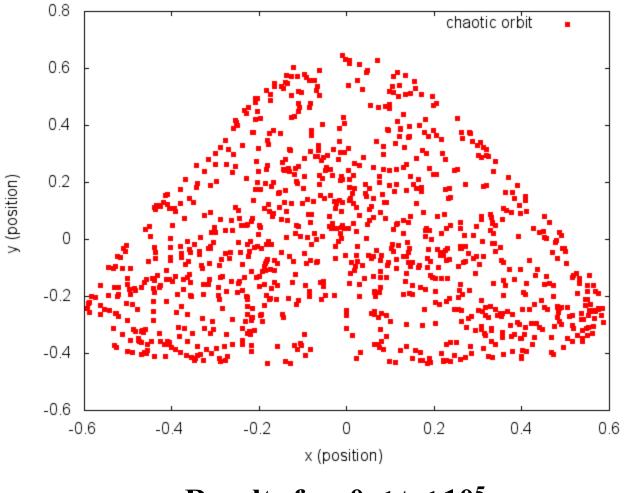


Regular vs Chaotic orbits

Regular orbit and its perturbation



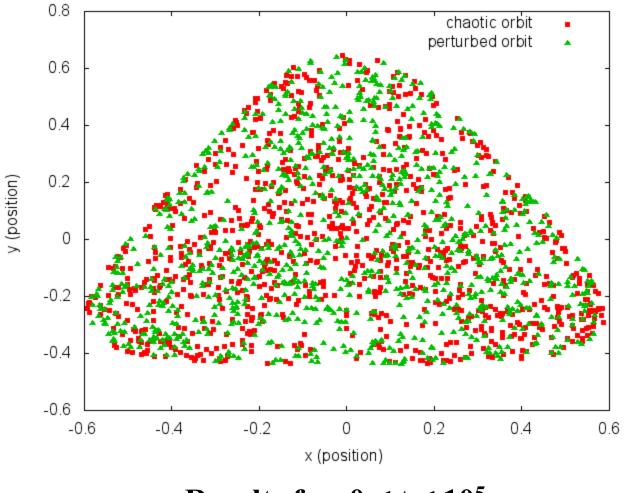
Regular vs Chaotic orbits Chaotic orbit



Results for $0 \le t \le 10^5$

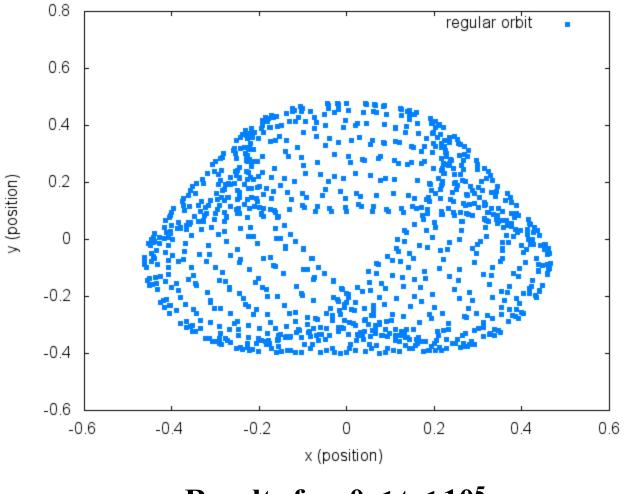
Regular vs Chaotic orbits

Chaotic orbit and its perturbation



Results for $0 \le t \le 10^5$

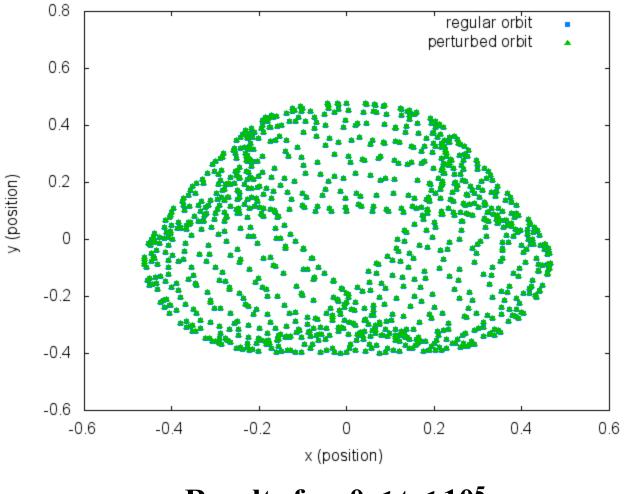
Regular vs Chaotic orbits Regular orbit



Results for $0 \le t \le 10^5$

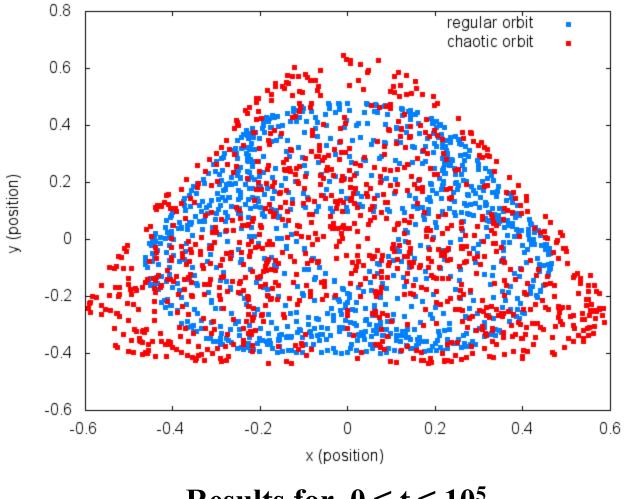
Regular vs Chaotic orbits

Regular orbit and its perturbation



Results for $0 \le t \le 10^5$

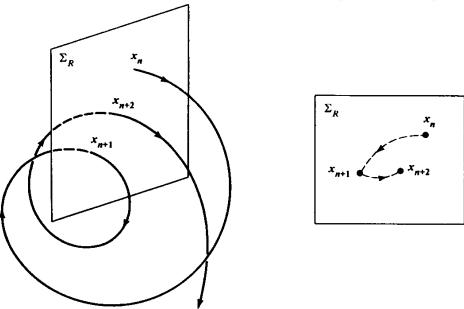
Regular vs Chaotic orbits



Results for $0 \le t \le 10^5$

Poincaré Surface of Section (PSS)

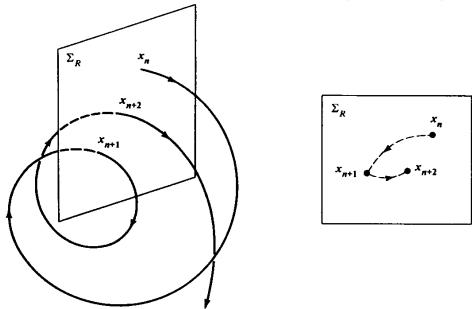
We can constrain the study of an N+1 degree of freedom Hamiltonian system to a 2N-dimensional subspace of the general phase space.



Lieberman & Lichtenberg, 1992, Regular and Chaotic Dynamics, Springer.

Poincaré Surface of Section (PSS)

We can constrain the study of an N+1 degree of freedom Hamiltonian system to a 2N-dimensional subspace of the general phase space.

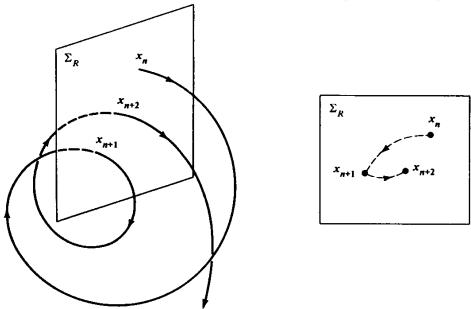


Lieberman & Lichtenberg, 1992, Regular and Chaotic Dynamics, Springer.

In general we can assume a PSS of the form q_{N+1} =constant. Then only variables $q_1,q_2,...,q_N,p_1,p_2,...,p_N$ are needed to describe the evolution of an orbit on the PSS, since p_{N+1} can be found from the Hamiltonian.

Poincaré Surface of Section (PSS)

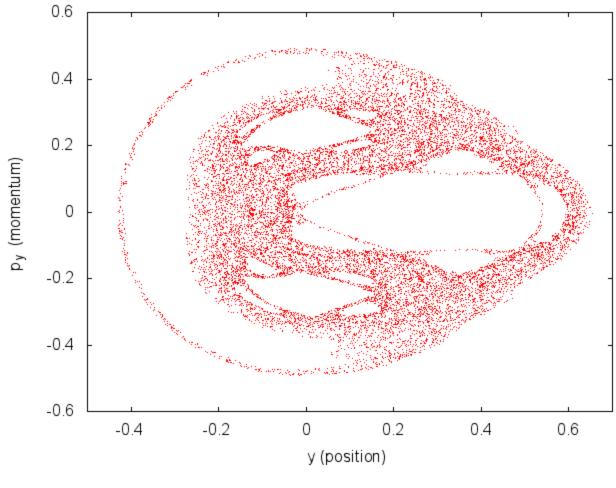
We can constrain the study of an N+1 degree of freedom Hamiltonian system to a 2N-dimensional subspace of the general phase space.



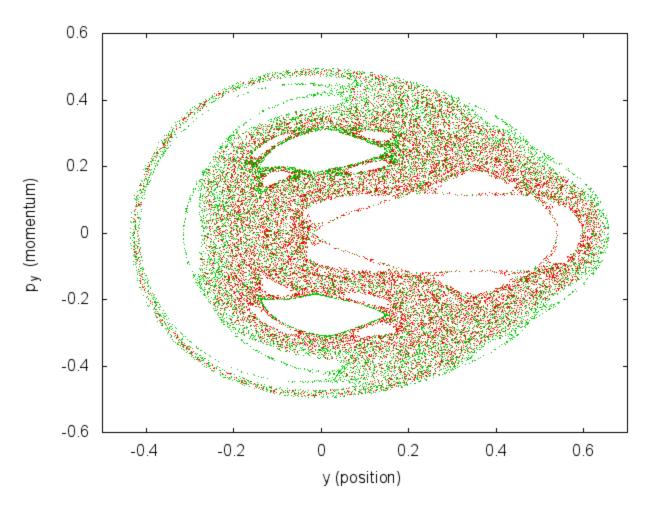
Lieberman & Lichtenberg, 1992, Regular and Chaotic Dynamics, Springer.

In general we can assume a PSS of the form q_{N+1} =constant. Then only variables $q_1,q_2,...,q_N,p_1,p_2,...,p_N$ are needed to describe the evolution of an orbit on the PSS, since p_{N+1} can be found from the Hamiltonian.

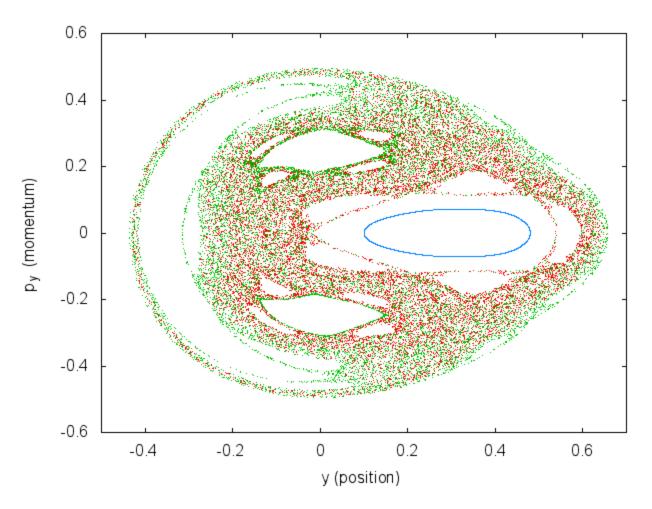
In this sense an N+1 degree of freedom Hamiltonian system corresponds to a 2N-dimensional map.



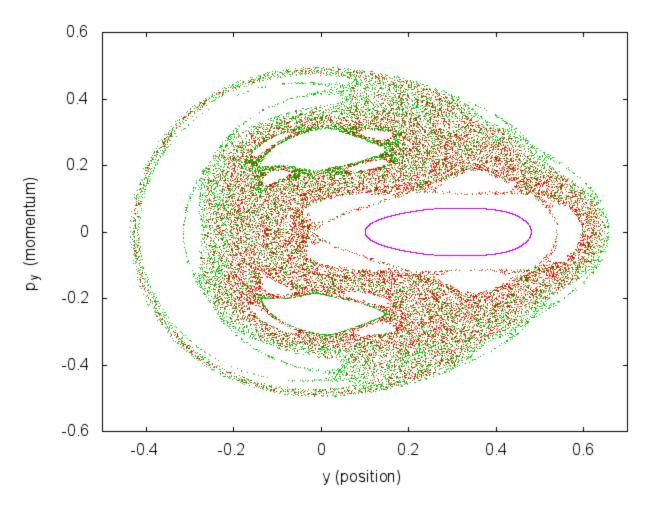
Chaotic orbit



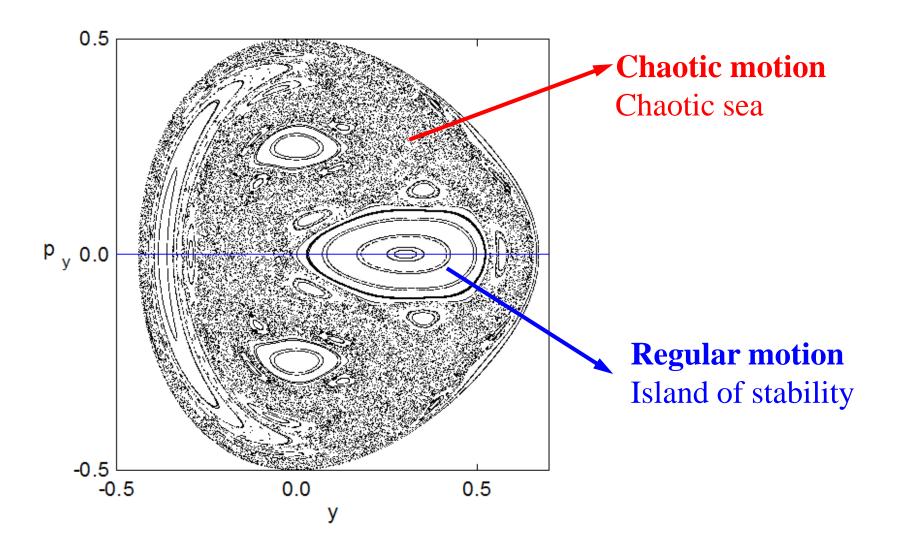
Chaotic orbit - Perturbed chaotic orbit

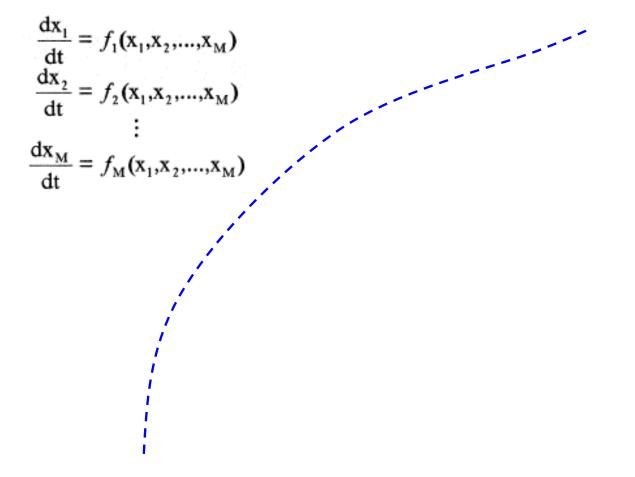


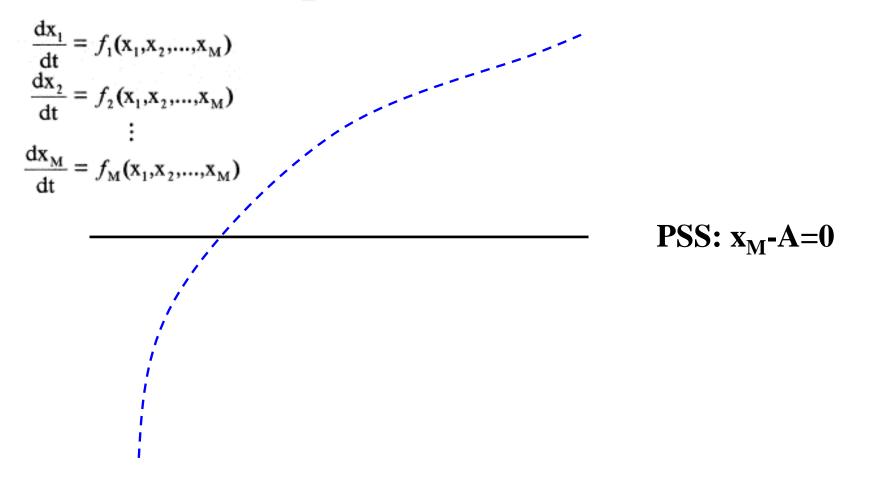
Chaotic orbit - Perturbed chaotic orbit Regular orbit

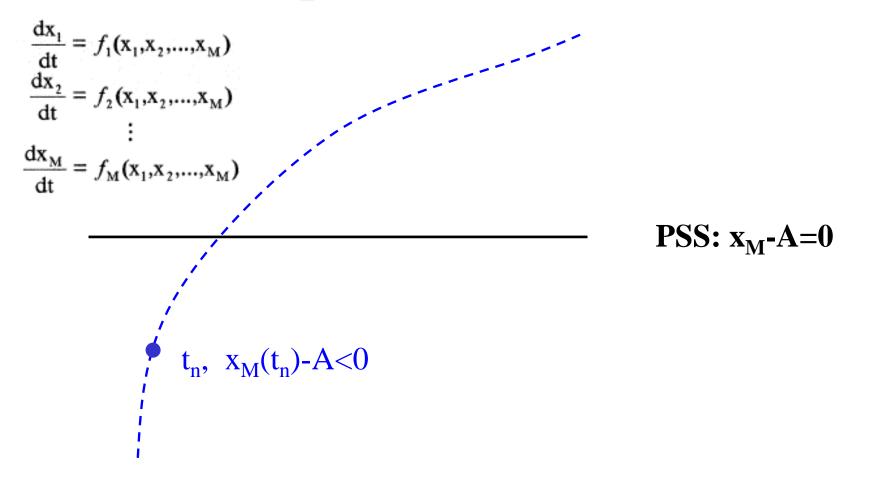


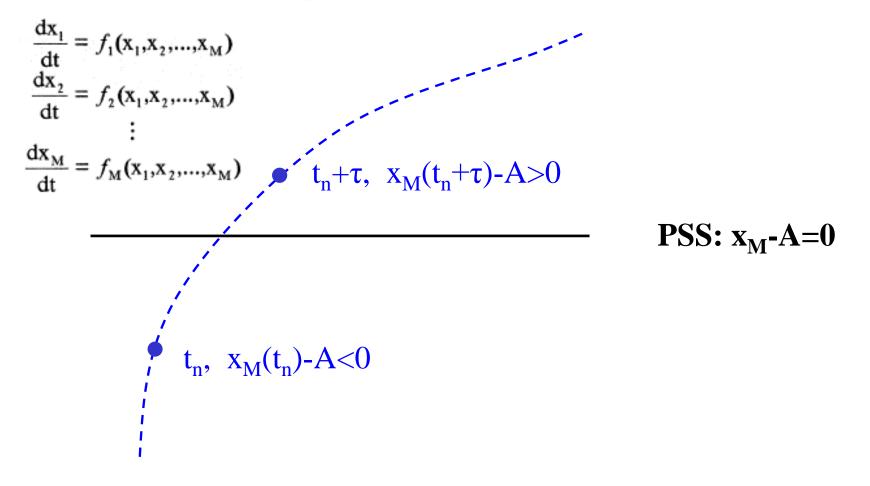
Chaotic orbit - Perturbed chaotic orbit Regular orbit - Perturbed regular orbit

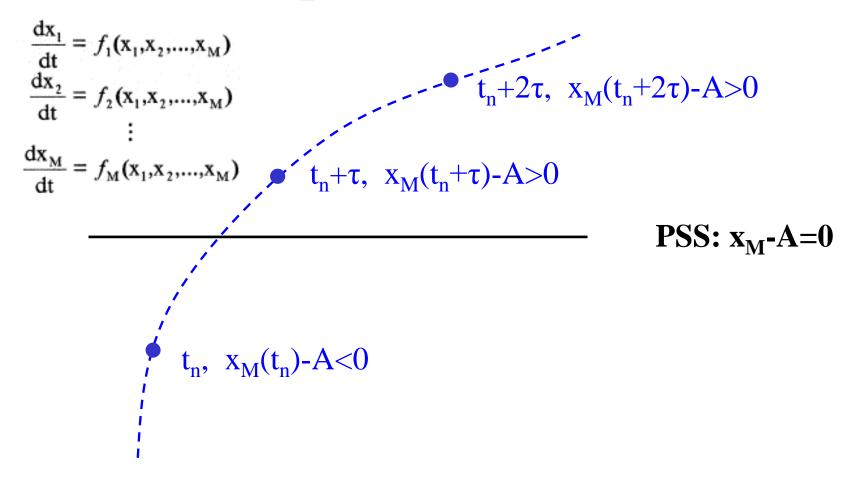


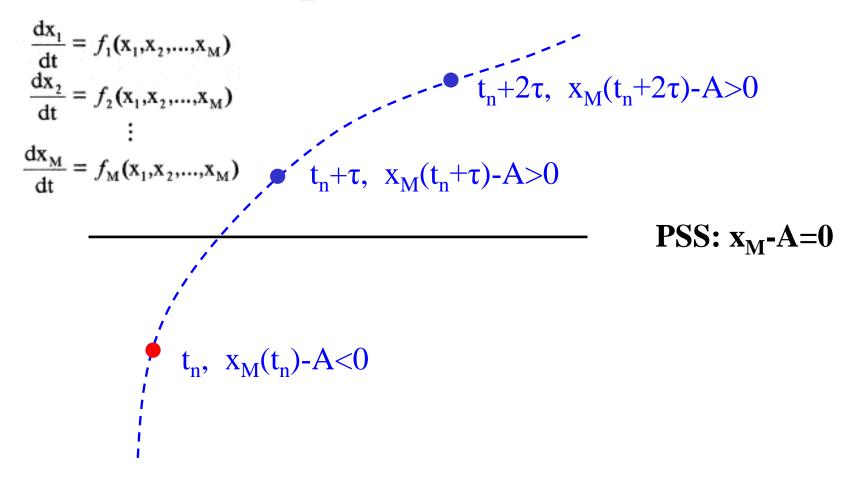


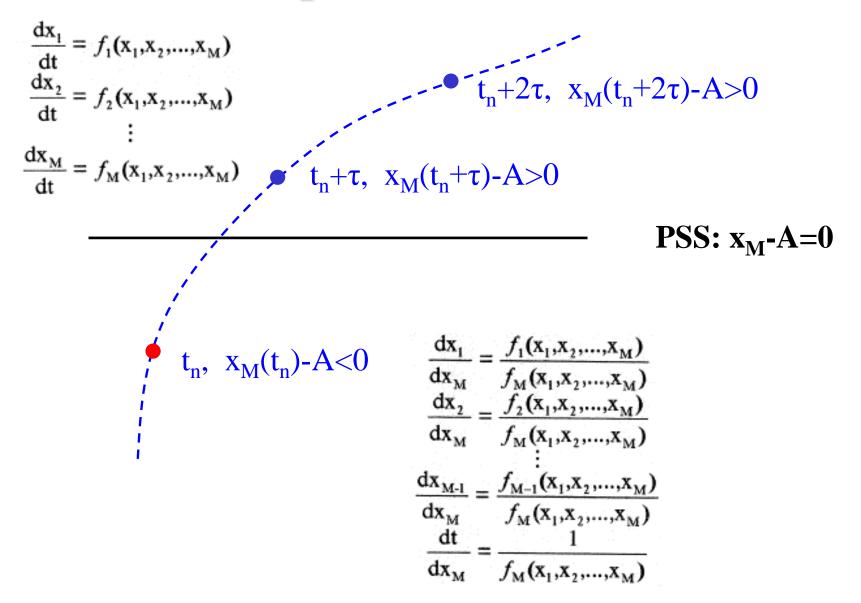


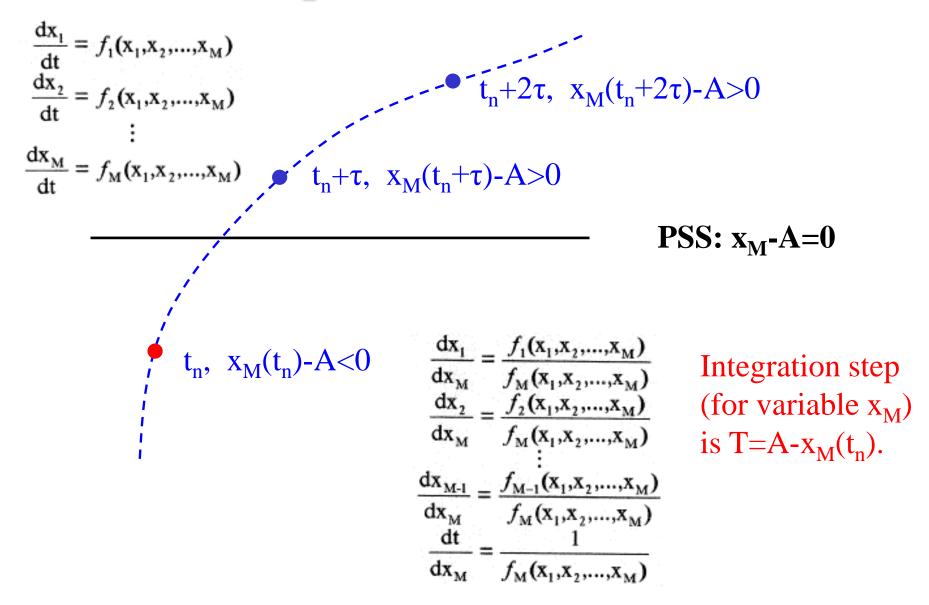












$$\frac{dx_{1}}{dt} = f_{1}(x_{1}, x_{2}, ..., x_{M})$$

$$\frac{dx_{2}}{dt} = f_{2}(x_{1}, x_{2}, ..., x_{M})$$

$$\vdots$$

$$\frac{dx_{M}}{dt} = f_{M}(x_{1}, x_{2}, ..., x_{M})$$

$$t_{n} + \tau, \quad x_{M}(t_{n} + \tau) - A > 0$$

$$t = t_{c}, \quad x_{M}(t_{c}) - A = 0$$

$$t_{n}, \quad x_{M}(t_{n}) - A < 0$$

$$\frac{dx_{1}}{dx_{M}} = \frac{f_{1}(x_{1}, x_{2}, ..., x_{M})}{f_{M}(x_{1}, x_{2}, ..., x_{M})}$$

$$Integration step$$

$$(for variable x_{M})$$

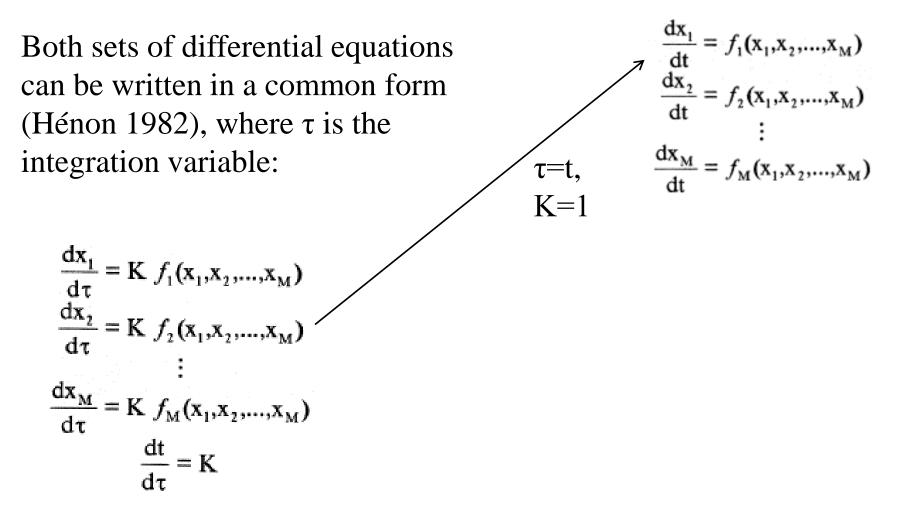
$$is T = A - x_{M}(t_{n}).$$

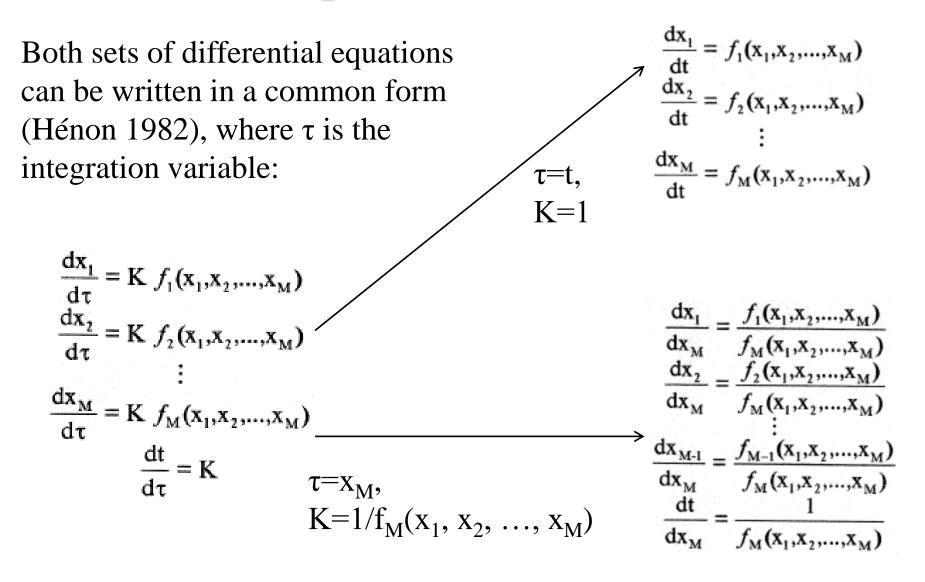
$$\frac{dx_{M-1}}{dx_{M}} = \frac{f_{M-1}(x_{1}, x_{2}, ..., x_{M})}{f_{M}(x_{1}, x_{2}, ..., x_{M})}$$

Both sets of differential equations can be written in a common form (Hénon 1982), where τ is the integration variable:

Both sets of differential equations can be written in a common form (Hénon 1982), where τ is the integration variable:

$$\frac{d\mathbf{x}_1}{d\tau} = \mathbf{K} f_1(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_M)$$
$$\frac{d\mathbf{x}_2}{d\tau} = \mathbf{K} f_2(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_M)$$
$$\vdots$$
$$\frac{d\mathbf{x}_M}{d\tau} = \mathbf{K} f_M(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_M)$$
$$\frac{dt}{d\tau} = \mathbf{K}$$





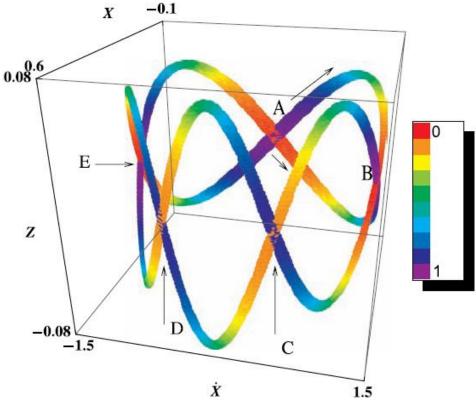
Chaos detection techniques

- Based on the visualization of orbits
 - ✓ Poincaré Surface of Section (PSS)
 - $\checkmark\,$ the color and rotation (CR) method
 - ✓ the 3D phase space slices (3PSS) technique

The color and rotation (CR) method

For 3 degree of freedom Hamiltonian systems and 4 dimensional symplectic maps:

We consider the 3D projection of the PSS and use color to indicate the 4th dimension.

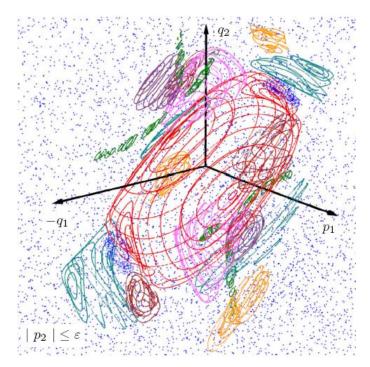


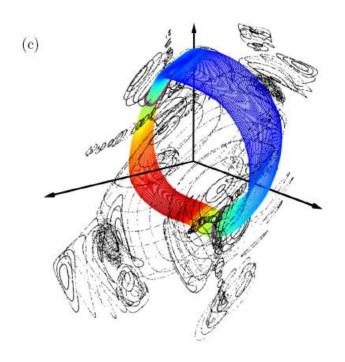
Katsanikas M and Patsis P A 2011 Int. J. Bif. Chaos 21 467

The 3D phase space slices (3PSS) technique

For 3 degree of freedom Hamiltonian systems and 4 dimensional symplectic maps:

We consider thin 3D phase space slices of the 4D phase space (e.g. $|p_2| \le \epsilon$) and present intersections of orbits with these slices.





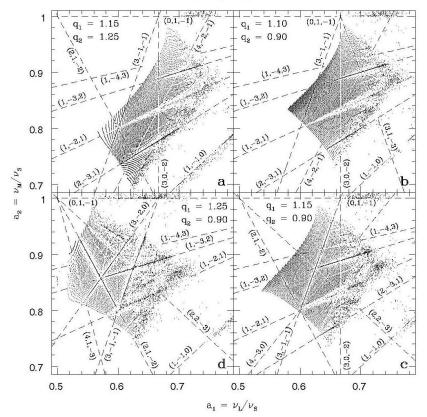
Chaos detection techniques

- Based on the visualization of orbits
 - ✓ Poincaré Surface of Section (PSS)
 - $\checkmark\,$ the color and rotation (CR) method
 - ✓ the 3D phase space slices (3PSS) technique
- Based on the numerical analysis of orbits
 - ✓ Frequency Map Analysis
 - ✓ 0-1 test

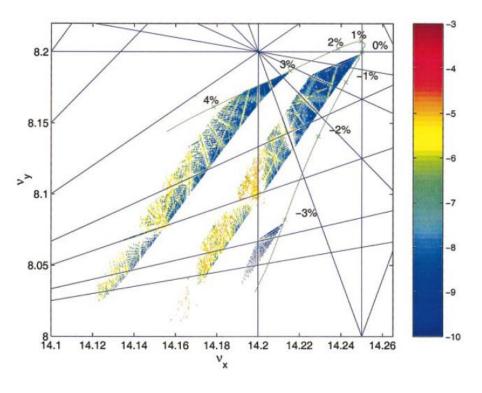
Frequency Map Analysis

Create Frequency Maps by computing the fundamental frequencies of orbits.

Regular motion: The computed frequencies do not vary in time Chaotic motion: The computed frequencies vary in time



Frequency Maps - Boxes



Steier C et al. 2002 Phys. Rev. E 65 056506

Papaphilippou Y and Laskar J 1998 Astron. Astrophys. 329 451

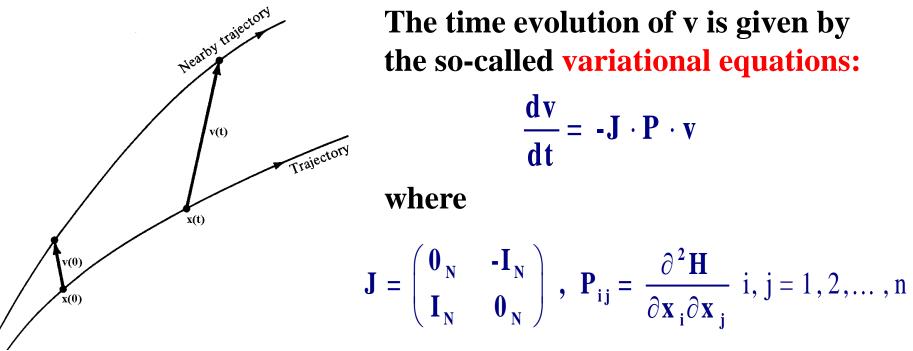
Chaos detection techniques

- Based on the visualization of orbits
 - ✓ Poincaré Surface of Section (PSS)
 - $\checkmark\,$ the color and rotation (CR) method
 - ✓ the 3D phase space slices (3PSS) technique
- Based on the numerical analysis of orbits
 - ✓ Frequency Map Analysis
 - ✓ 0-1 test
- Chaos indicators based on the evolution of deviation vectors from a given orbit
 - ✓ Maximum Lyapunov Exponent
 - ✓ Fast Lyapunov Indicator (FLI) and Orthogonal Fast Lyapunov Indicators (OFLI and OFLI2)
 - ✓ Mean Exponential Growth Factor of Nearby Orbits (MEGNO)
 - ✓ Relative Lyapunov Indicator (RLI)
 - ✓ Smaller ALignment Index SALI
 - ✓ Generalized ALignment Index GALI

Variational Equations

We use the notation $\mathbf{x} = (q_1, q_2, ..., q_N, p_1, p_2, ..., p_N)^T$. The deviation vector from a given orbit is denoted by

$$\mathbf{v} = (\delta \mathbf{x}_1, \delta \mathbf{x}_2, \dots, \delta \mathbf{x}_n)^T$$
, with n=2N



Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93

Example (Hénon-Heiles system) $H = \frac{1}{2} \left(p_x^2 + p_y^2 \right) + \frac{1}{2} \left(x^2 + y^2 \right) + x^2 y \cdot \frac{1}{3} y^3$ Hamilton's equations of motion: $\frac{dp_i}{dt} = \cdot \frac{\partial H}{\partial q_i}, \quad \frac{dq_i}{dt} = \frac{\partial H}{\partial p_i} \Rightarrow \begin{cases} \dot{x} = p_x \\ \dot{y} = p_y \\ \dot{p}_x = -x \cdot 2xy \end{cases}$

$$\dot{\mathbf{p}}_{y} = -\mathbf{y} - \mathbf{x}^{2} + \mathbf{y}^{2}$$

Example (Hénon-Heiles system) $H = \frac{1}{2} (p_x^2 + p_y^2) + \frac{1}{2} (x^2 + y^2) + x^2 y - \frac{1}{3} y^3$ Hamilton's equations of motion: $\dot{x} = p_x$

$$\frac{d\mathbf{p}_{i}}{dt} = -\frac{\partial \mathbf{H}}{\partial \mathbf{q}_{i}}, \ \frac{d\mathbf{q}_{i}}{dt} = \frac{\partial \mathbf{H}}{\partial \mathbf{p}_{i}} \Longrightarrow \begin{cases} \mathbf{y} = \mathbf{p}_{y} \\ \dot{\mathbf{p}}_{x} = -\mathbf{x} - 2\mathbf{x}\mathbf{y} \\ \dot{\mathbf{p}}_{y} = -\mathbf{y} - \mathbf{x}^{2} + \mathbf{y}^{2} \end{cases}$$

$$\dot{\mathbf{p}}_{\mathbf{x}} + \dot{\mathbf{v}}_{\mathbf{3}} = -\mathbf{x} - \mathbf{v}_{1} - 2(\mathbf{x} + \mathbf{v}_{1})(\mathbf{y} + \mathbf{v}_{2}) \implies \dot{\mathbf{p}}_{\mathbf{x}} + \dot{\mathbf{v}}_{\mathbf{3}} = -\mathbf{x} - \mathbf{v}_{1} - 2\mathbf{x}\mathbf{y} - 2\mathbf{x}\mathbf{v}_{2} - 2\mathbf{y}\mathbf{v}_{1} - 2\mathbf{v}_{1}\mathbf{v}_{2} \implies$$

Example (Hénon-Heiles system) $H = \frac{1}{2} \left(p_x^2 + p_y^2 \right) + \frac{1}{2} \left(x^2 + y^2 \right) + x^2 y - \frac{1}{3} y^3$ ons of motion: $\frac{dp_{i}}{dt} = -\frac{\partial H}{\partial q_{i}}, \quad \frac{dq_{i}}{dt} = \frac{\partial H}{\partial p_{i}} \implies \begin{cases} \dot{x} = p_{x} \\ \dot{y} = p_{y} \end{cases}$ $\dot{p}_{x} = -x - 2xy$ $\dot{p}_{y} = -y - x^{2} + y^{2}$ Hamilton's equations of motion:

$$\dot{\mathbf{p}}_{\mathbf{x}} + \dot{\mathbf{v}}_{\mathbf{3}} = -\mathbf{x} - \mathbf{v}_{1} - 2(\mathbf{x} + \mathbf{v}_{1})(\mathbf{y} + \mathbf{v}_{2}) \implies$$

$$\dot{\mathbf{p}}_{\mathbf{x}} + \dot{\mathbf{v}}_{\mathbf{3}} = -\mathbf{x} - \mathbf{v}_{1} - 2\mathbf{x}\mathbf{y} - 2\mathbf{x}\mathbf{v}_{2} - 2\mathbf{y}\mathbf{v}_{1} - 2\mathbf{v}_{1}\mathbf{v}_{2} \implies$$

Example (Hénon-Heiles system) $H = \frac{1}{2} \left(p_x^2 + p_y^2 \right) + \frac{1}{2} \left(x^2 + y^2 \right) + x^2 y - \frac{1}{3} y^3$ ons of motion: $\frac{dp_{i}}{dt} = -\frac{\partial H}{\partial q_{i}}, \quad \frac{dq_{i}}{dt} = \frac{\partial H}{\partial p_{i}} \implies \begin{cases} \dot{x} = p_{x} \\ \dot{y} = p_{y} \end{cases}$ $\dot{p}_{x} = -x - 2xy$ $\dot{p}_{y} = -y - x^{2} + y^{2}$ Hamilton's equations of motion:

$$\dot{\mathbf{p}}_{\mathbf{x}} + \dot{\mathbf{v}}_{\mathbf{3}} = -\mathbf{x} - \mathbf{v}_{1} - 2(\mathbf{x} + \mathbf{v}_{1})(\mathbf{y} + \mathbf{v}_{2}) \implies \dot{\mathbf{p}}_{\mathbf{x}} + \dot{\mathbf{v}}_{\mathbf{3}} = -\mathbf{x} - \mathbf{v}_{1} - 2\mathbf{x}\mathbf{y} - 2\mathbf{x}\mathbf{v}_{2} - 2\mathbf{y}\mathbf{v}_{1} - 2\mathbf{v}\mathbf{v}_{2} \implies$$

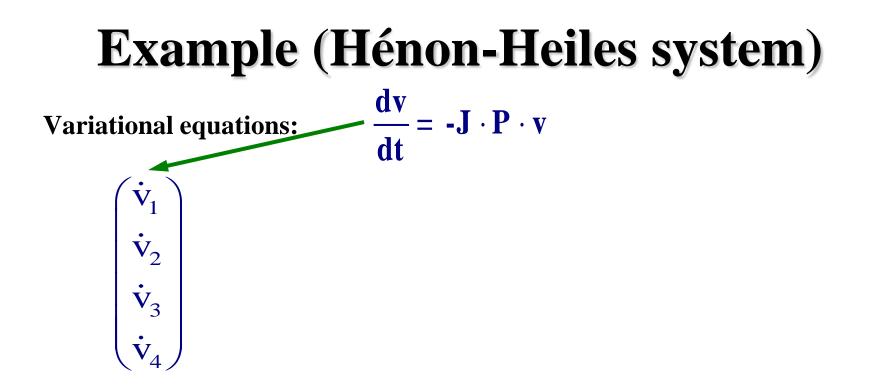
Example (Hénon-Heiles system) $H = \frac{1}{2} \left(p_x^2 + p_y^2 \right) + \frac{1}{2} \left(x^2 + y^2 \right) + x^2 y - \frac{1}{3} y^3$ ons of motion: $\frac{dp_{i}}{dt} = -\frac{\partial H}{\partial q_{i}}, \quad \frac{dq_{i}}{dt} = \frac{\partial H}{\partial p_{i}} \implies \begin{cases} \dot{x} = p_{x} \\ \dot{y} = p_{y} \end{cases}$ $\dot{p}_{x} = -x - 2xy$ $\dot{p}_{y} = -y - x^{2} + y^{2}$ Hamilton's equations of motion:

$$\dot{p}_{x} + \dot{v}_{3} = -x - v_{1} - 2(x + v_{1})(y + v_{2}) \implies \dot{p}_{x} + \dot{v}_{3} = -x - v_{1} - 2xy - 2xv_{2} - 2yv_{1} - 2vv_{2} \implies \dot{v}_{3} = -v_{1} - 2yv_{1} - 2xv_{2} - 2yv_{1} - 2vv_{2} \implies$$

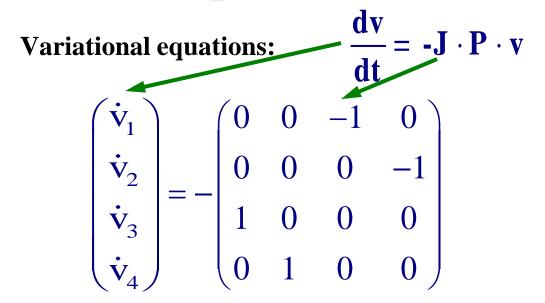
Example (Hénon-Heiles system)

Variational equations:

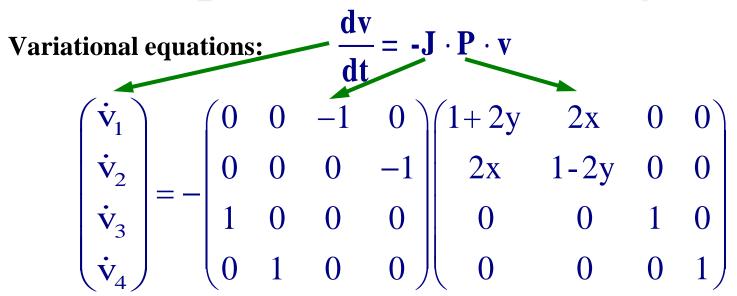
 $\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{t}} = -\mathbf{J}\cdot\mathbf{P}\cdot\mathbf{v}$

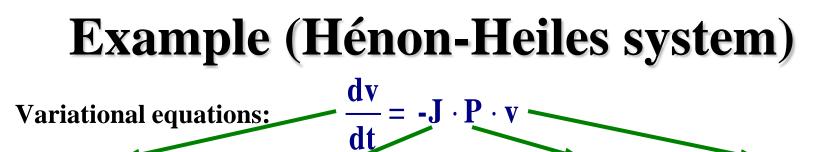


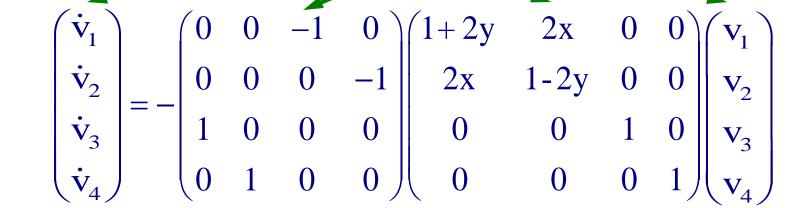
Example (Hénon-Heiles system)

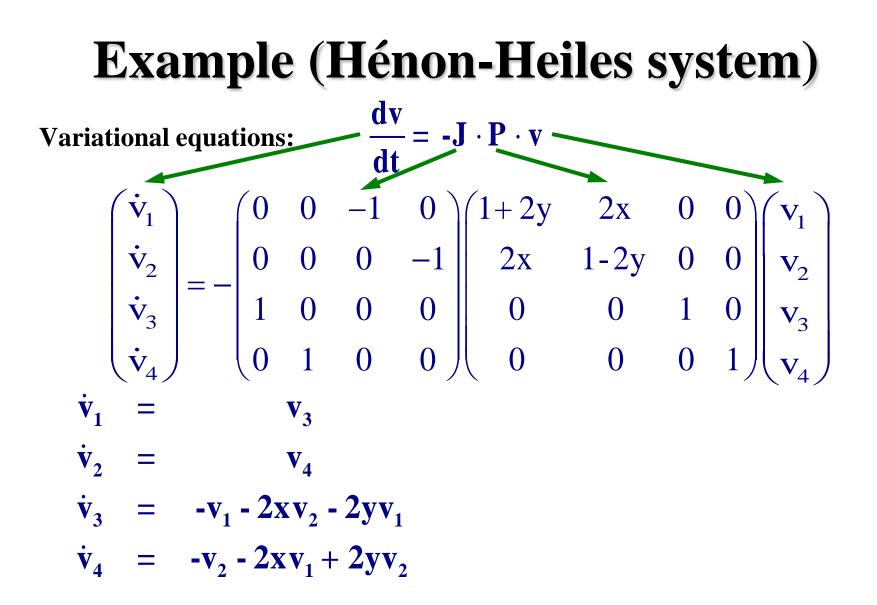


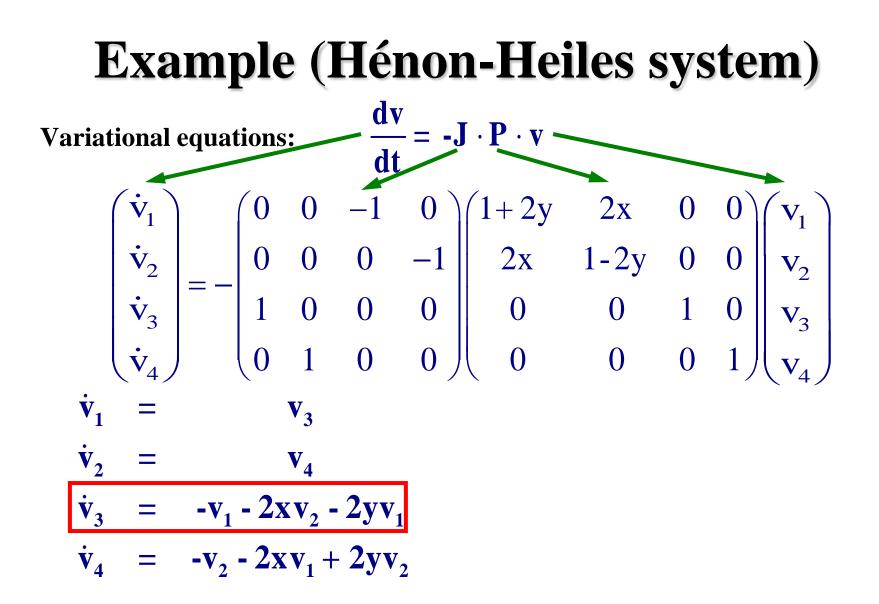
Example (Hénon-Heiles system)

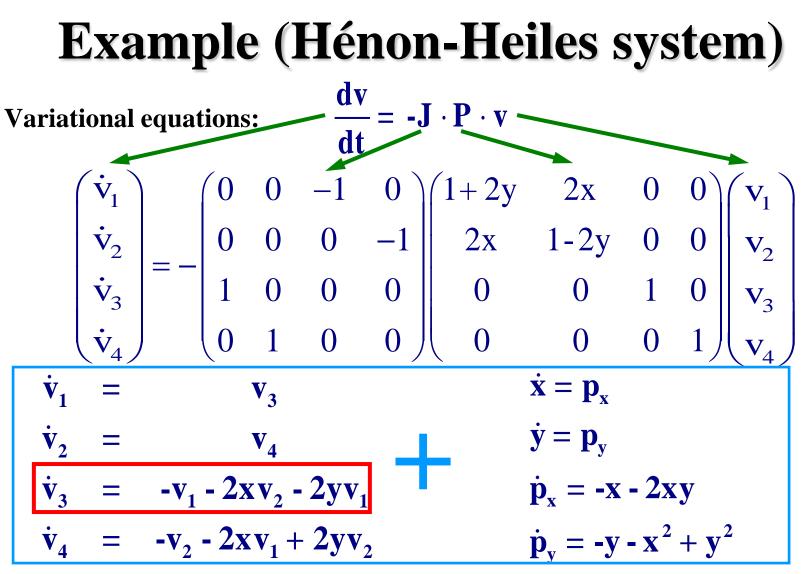












Complete set of equations

Symplectic Maps

Consider an 2N-dimensional symplectic map T. In this case we have discrete time.

This is an area-preserving map whose Jacobian matrix

$$\mathbf{M} = \frac{\partial \mathbf{T}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{T}_{1}}{\partial \mathbf{x}_{1}} & \frac{\partial \mathbf{T}_{1}}{\partial \mathbf{x}_{2}} & \cdots & \frac{\partial \mathbf{T}_{1}}{\partial \mathbf{x}_{2N}} \\ \frac{\partial \mathbf{T}_{2}}{\partial \mathbf{x}_{1}} & \frac{\partial \mathbf{T}_{2}}{\partial \mathbf{x}_{2}} & \cdots & \frac{\partial \mathbf{T}_{2}}{\partial \mathbf{x}_{2N}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \mathbf{T}_{2N}}{\partial \mathbf{x}_{1}} & \frac{\partial \mathbf{T}_{2N}}{\partial \mathbf{x}_{2}} & \cdots & \frac{\partial \mathbf{T}_{2N}}{\partial \mathbf{x}_{2N}} \end{bmatrix}$$

$$\mathbf{M}^{\mathrm{T}} \cdot \mathbf{J}_{2\mathrm{N}} \cdot \mathbf{M} = \mathbf{J}_{2\mathrm{N}}$$

satisfies

Symplectic Maps

Consider an 2N-dimensional symplectic map T. In this case we have discrete time.

The evolution of an orbit with initial condition $P(0)=(x_1(0), x_2(0), \dots, x_{2N}(0))$ is governed by the equations of map T $P(i+1)=T P(i) , i=0,1,2,\dots$

The evolution of an initial deviation vector $v(0) = (\delta x_1(0), \delta x_2(0), ..., \delta x_{2N}(0))$ is given by the corresponding tangent map

$$\mathbf{v}(\mathbf{i}+1) = \left. \frac{\partial \mathbf{T}}{\partial \mathbf{P}} \right|_{\mathbf{i}} \cdot \mathbf{v}(\mathbf{i}) , \mathbf{i} = \mathbf{0}, \mathbf{1}, \mathbf{2}, \dots$$

Equations of the map:

$$\begin{pmatrix} \mathbf{x}_1' \\ \mathbf{x}_2' \end{pmatrix} = \mathbf{T} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} \Rightarrow \begin{array}{l} \mathbf{x}_1' &= \mathbf{x}_1 + \mathbf{x}_2 \\ \mathbf{x}_2' &= \mathbf{x}_2 - \mathbf{v} \sin(\mathbf{x}_1 + \mathbf{x}_2) \end{array} \quad (\text{mod } 2\pi)$$

Equations of the map:

$$\begin{pmatrix} x'_1 \\ x'_2 \end{pmatrix} = T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \Rightarrow \begin{matrix} x'_1 &= x_1 + x_2 \\ x'_2 &= x_2 - v \sin(x_1 + x_2) \end{matrix} \quad (\text{mod } 2\pi)$$

$$\mathbf{v}(\mathbf{i}+\mathbf{1}) = \frac{\partial \mathbf{T}}{\partial \mathbf{P}}\Big|_{\mathbf{i}} \cdot \mathbf{v}(\mathbf{i})$$

Equations of the map:

$$\begin{pmatrix} \mathbf{x}'_1 \\ \mathbf{x}'_2 \end{pmatrix} = \mathbf{T} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} \Rightarrow \begin{pmatrix} \mathbf{x}'_1 \\ \mathbf{x}_2 \end{pmatrix} \Rightarrow \begin{pmatrix} \mathbf{x}'_1 \\ \mathbf{x}'_2 \end{pmatrix} = \begin{pmatrix} \mathbf{x}_1 + \mathbf{x}_2 \\ \mathbf{x}'_2 \\ \mathbf{x}'_2 \end{pmatrix} \pmod{2\pi}$$
(mod 2π)

gent map.

$$\mathbf{v}(\mathbf{i}+1) = \frac{\partial \mathbf{T}}{\partial \mathbf{P}}\Big|_{\mathbf{i}} \cdot \mathbf{v}(\mathbf{i})$$

$$\begin{pmatrix} \mathbf{dx'}_{1} \\ \mathbf{dx'}_{2} \end{pmatrix}$$

Equations of the map:

$$\begin{pmatrix} \mathbf{x}'_1 \\ \mathbf{x}'_2 \end{pmatrix} = \mathbf{T} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} \Rightarrow \begin{pmatrix} \mathbf{x}'_1 \\ \mathbf{x}'_2 \end{pmatrix} = \begin{pmatrix} \mathbf{x}_1 + \mathbf{x}_2 \\ \mathbf{x}'_2 \\ \mathbf{x}'_2 \end{pmatrix} \xrightarrow{\mathbf{x}'_1} = \begin{pmatrix} \mathbf{x}_1 + \mathbf{x}_2 \\ \mathbf{x}_2 - \mathbf{v} \sin(\mathbf{x}_1 + \mathbf{x}_2) \end{pmatrix} \pmod{2\pi}$$

$$\mathbf{v}(\mathbf{i}+1) = \frac{\partial \mathbf{T}}{\partial \mathbf{P}}\Big|_{\mathbf{i}} \cdot \mathbf{v}(\mathbf{i})$$

$$\left(\frac{\mathbf{dx}'_{1}}{\mathbf{dx}'_{2}}\right) = \left(\begin{array}{cc} 1 & 1 \\ -\mathbf{v}\mathbf{cos}(\mathbf{x}_{1}+\mathbf{x}_{2}) & 1-\mathbf{v}\mathbf{cos}(\mathbf{x}_{1}+\mathbf{x}_{2}) \end{array}\right)$$

Equations of the map:

$$\begin{pmatrix} \mathbf{x}_1' \\ \mathbf{x}_2' \end{pmatrix} = \mathbf{T} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} \Rightarrow \begin{pmatrix} \mathbf{x}_1' \\ \mathbf{x}_2 \end{pmatrix} \Rightarrow \begin{pmatrix} \mathbf{x}_1' \\ \mathbf{x}_2' \end{pmatrix} = \begin{pmatrix} \mathbf{x}_1 + \mathbf{x}_2 \\ \mathbf{x}_2' \\ \mathbf{x}_2' = \begin{pmatrix} \mathbf{x}_2 - \mathbf{v} \sin(\mathbf{x}_1 + \mathbf{x}_2) \end{pmatrix} \pmod{2\pi}$$

$$\mathbf{v}(\mathbf{i}+1) = \frac{\partial \mathbf{T}}{\partial \mathbf{P}}\Big|_{\mathbf{i}} \cdot \mathbf{v}(\mathbf{i})$$

$$\left(\frac{\mathbf{d}\mathbf{x}_{1}'}{\mathbf{d}\mathbf{x}_{2}'}\right) = \left(\begin{array}{cc} 1 & 1 \\ -\mathbf{v}\mathbf{cos}(\mathbf{x}_{1}+\mathbf{x}_{2}) & 1-\mathbf{v}\mathbf{cos}(\mathbf{x}_{1}+\mathbf{x}_{2}) \end{array}\right) \left(\frac{\mathbf{d}\mathbf{x}_{1}}{\mathbf{d}\mathbf{x}_{2}}\right)$$

Lyapunov Exponents

Roughly speaking, the Lyapunov exponents of a given orbit characterize the mean exponential rate of divergence of trajectories surrounding it.

Consider an orbit in the 2N-dimensional phase space with initial condition x(0) and an initial deviation vector from it v(0). Then the mean exponential rate of divergence is:

$$\sigma(\mathbf{x}(\mathbf{0}),\mathbf{v}(\mathbf{0})) = \lim_{t\to\infty}\frac{1}{t}\ln\frac{\|\mathbf{v}(t)\|}{\|\mathbf{v}(\mathbf{0})\|}$$

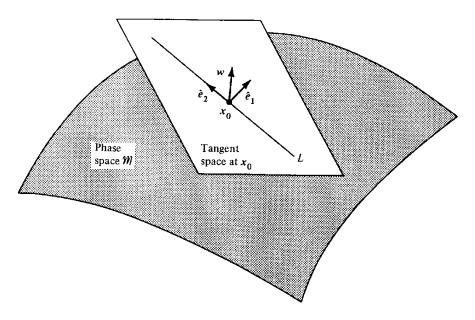
We commonly use the Euclidian norm and set d(0)=||v(0)||=1

Lyapunov Exponents

There exists an Mdimensional basis $\{\hat{e}_i\}$ of v such that for any v, σ takes one of the M (possibly nondistinct) values

 $\sigma_{i}(\mathbf{x}(\mathbf{0})) = \sigma(\mathbf{x}(\mathbf{0}), \, \mathbf{\hat{e}}_{i})$

which are the Lyapunov exponents.



Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93

In autonomous Hamiltonian systems the M exponents are ordered in pairs of opposite sign numbers and two of them are 0.

Computation of the Maximum Lyapunov Exponent

Due to the exponential growth of v(t) (and of d(t)=||v(t)||) we renormalize v(t) from time to time.

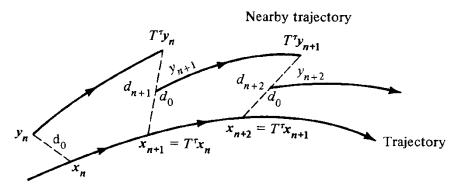


Figure 5.6. Numerical calculation of the maximal Liapunov characteristic exponent. Here y = x + v and τ is a finite interval of time (after Benettin *et al.*, 1976).

Then the Maximum Lyapunov exponent is computed as $\sigma_1 = \lim_{n \to \infty} \frac{1}{n \tau} \sum_{i=1}^n \ln d_i$

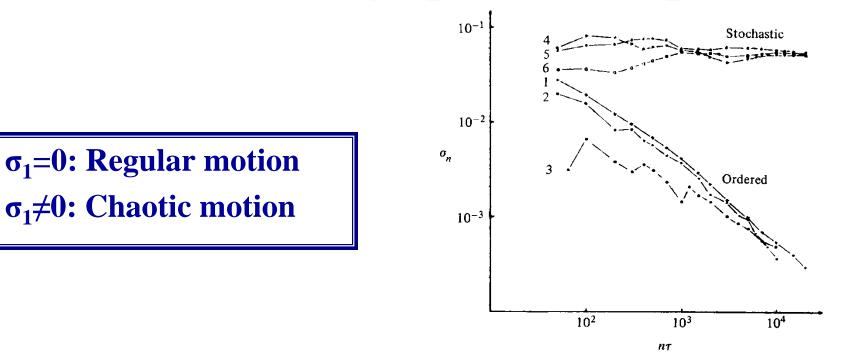
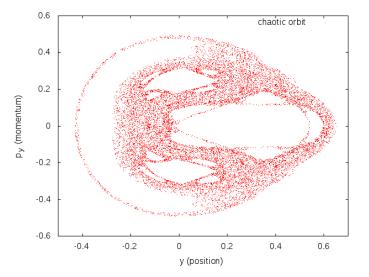


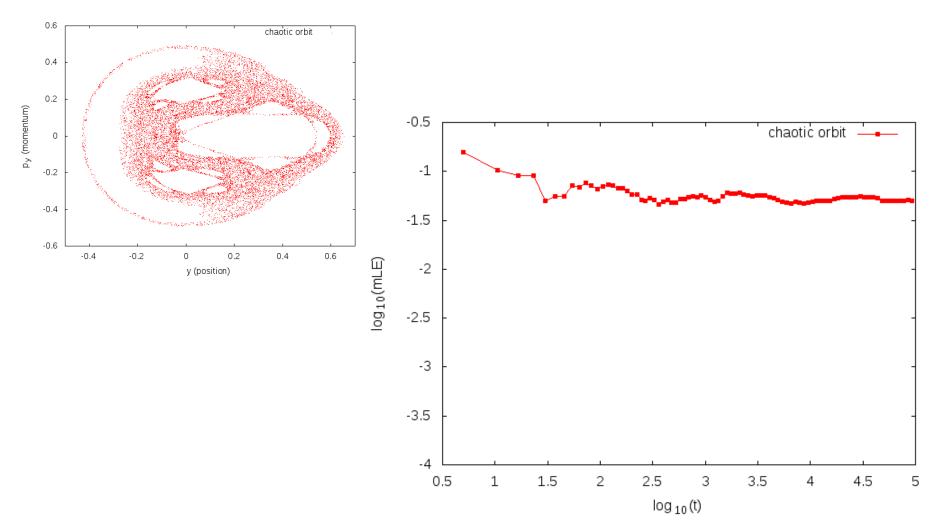
Figure 5.7. Behavior of σ_n at the intermediate energy E = 0.125 for initial points taken in the ordered (curves 1-3) or stochastic (curves 4-6) regions (after Benettin *et al.*, 1976).

If we start with more than one linearly independent deviation vectors they will align to the direction defined by the largest Lyapunov exponent for chaotic orbits.

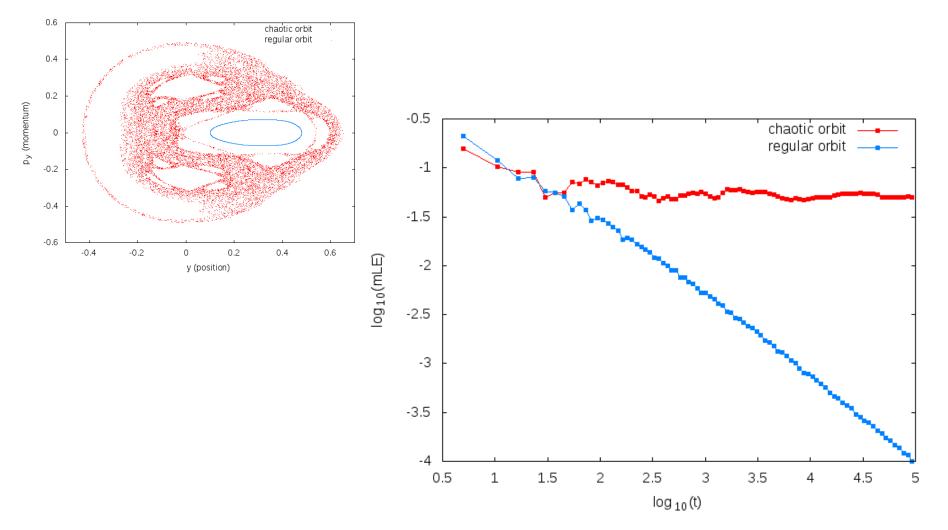
Hénon-Heiles system: Chaotic orbit



Hénon-Heiles system: Chaotic orbit



Hénon-Heiles system: Chaotic orbit and Regular orbit



The Smaller ALignment Index (SALI) method

Definition of the SALI

We follow the evolution in time of <u>two different initial</u> <u>deviation vectors</u> $(v_1(0), v_2(0))$, and define the SALI (Ch.S. 2001, J. Phys. A) as:

SALI(t) = m in
$$\{ \| \hat{\mathbf{v}}_{1}(t) + \hat{\mathbf{v}}_{2}(t) \|, \| \hat{\mathbf{v}}_{1}(t) - \hat{\mathbf{v}}_{2}(t) \| \}$$

where

$$\hat{\mathbf{v}}_1(\mathbf{t}) = \frac{\mathbf{v}_1(\mathbf{t})}{\left\|\mathbf{v}_1(\mathbf{t})\right\|}$$

When the two vectors become collinear

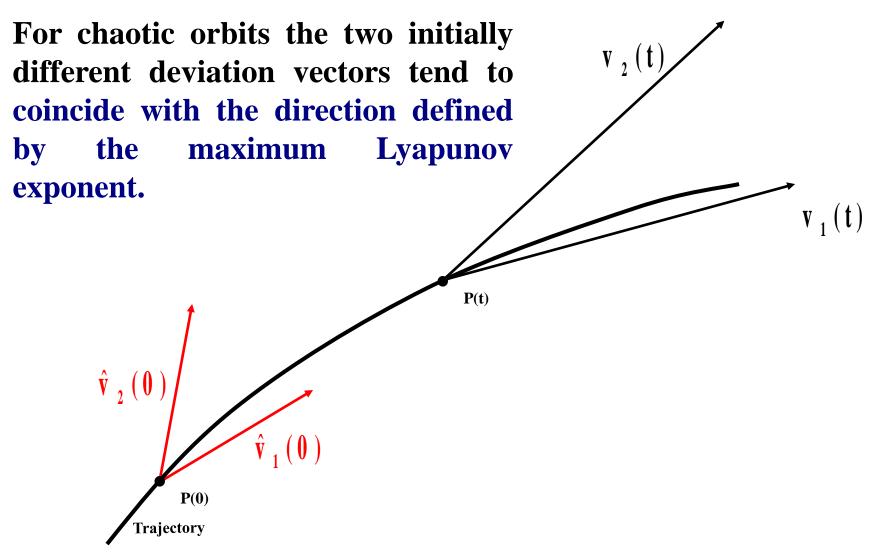
SALI(t) \rightarrow **0**

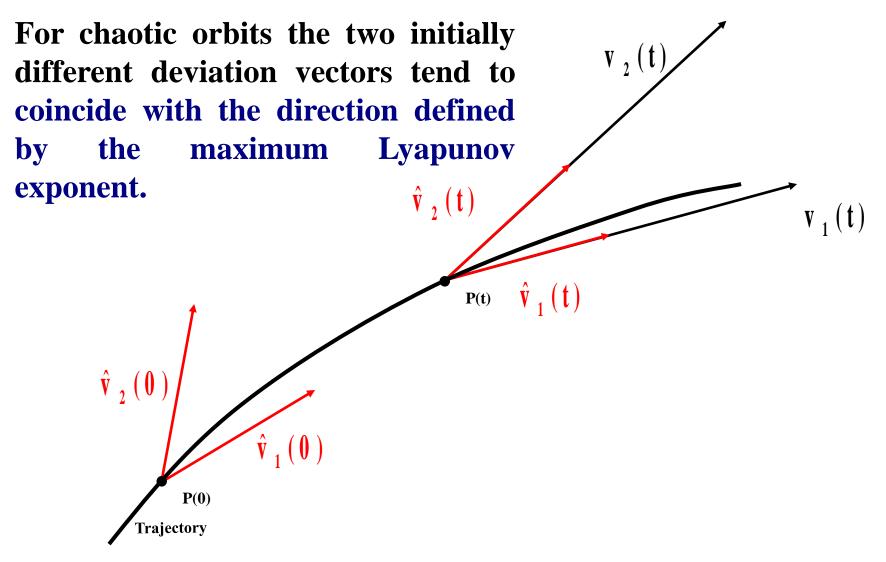
For chaotic orbits the two initially different deviation vectors tend to coincide with the direction defined by the maximum Lyapunov exponent.

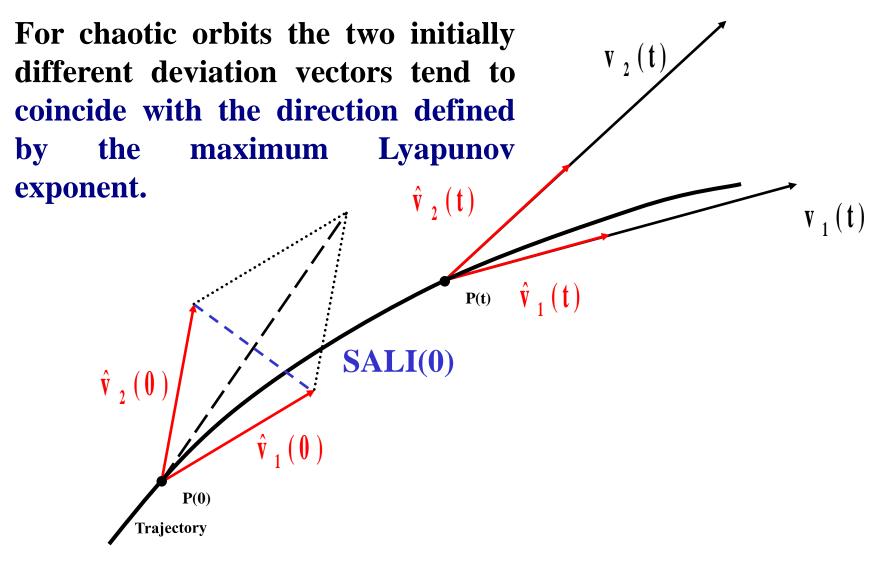
For chaotic orbits the two initially different deviation vectors tend to coincide with the direction defined the maximum by Lyapunov exponent. P(t) **P(0)** Trajectory

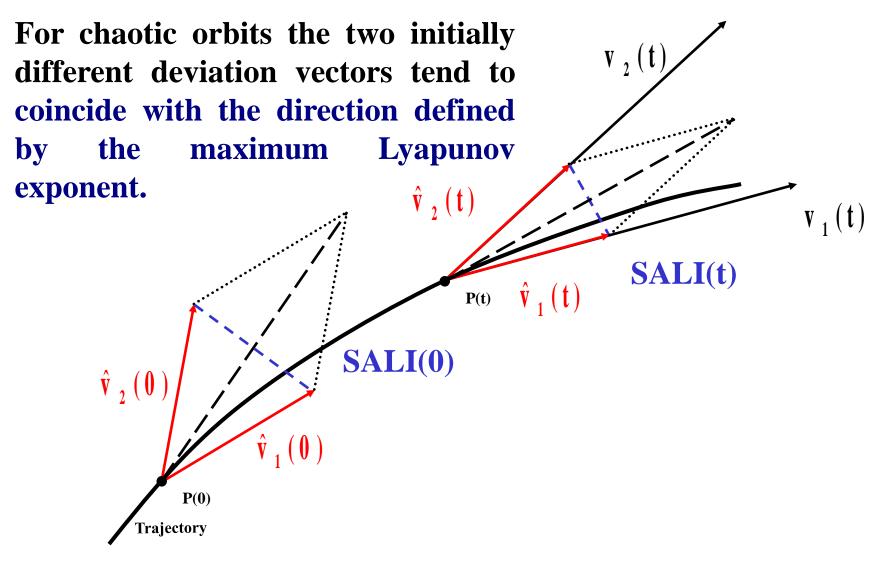
For chaotic orbits the two initially different deviation vectors tend to coincide with the direction defined the maximum by Lyapunov exponent. P(t) Ŷ₂(U ₁ (**≬**) **P(0)**

Trajectory





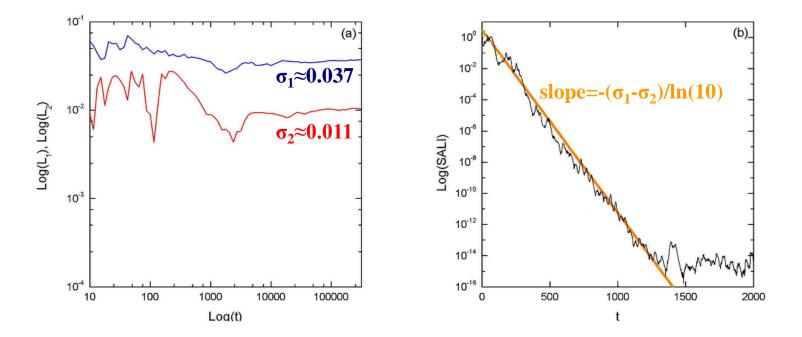


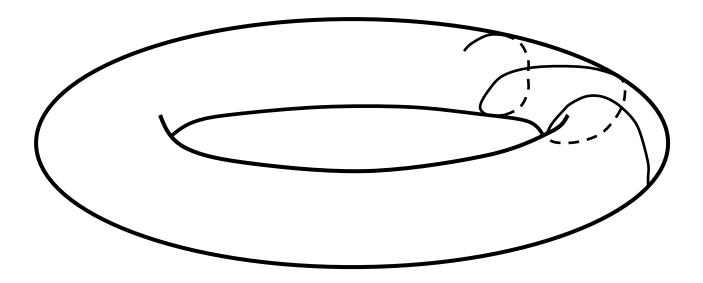


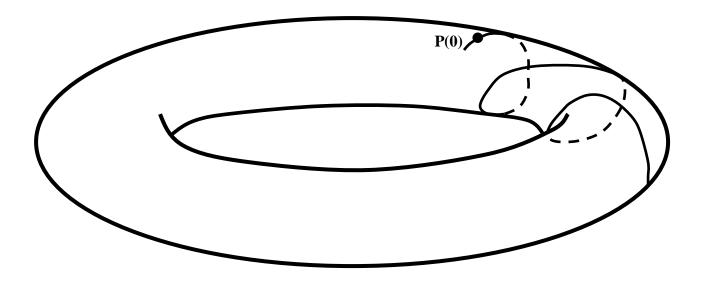
We test the validity of the approximation $SALI \sim e^{-(\sigma 1 - \sigma^2)t}$ (Ch.S., Antonopoulos, Bountis, Vrahatis, 2004, J. Phys. A) for a chaotic orbit of the 3D Hamiltonian

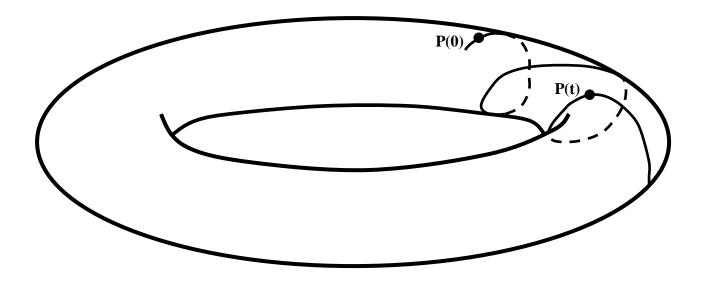
$$\mathbf{H} = \sum_{i=1}^{3} \frac{\omega_i}{2} (\mathbf{q}_i^2 + \mathbf{p}_i^2) + \mathbf{q}_1^2 \mathbf{q}_2 + \mathbf{q}_1^2 \mathbf{q}_3$$

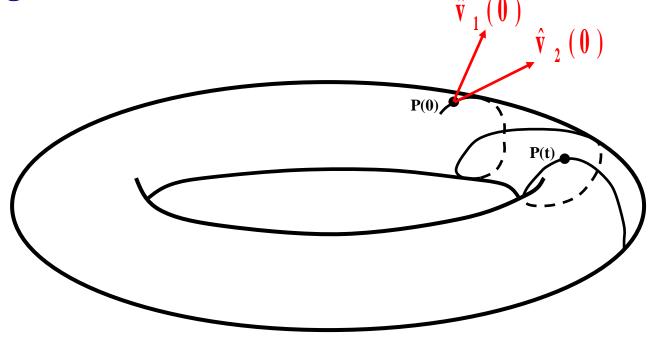
with ω_1 =1, ω_2 =1.4142, ω_3 =1.7321, H=0.09

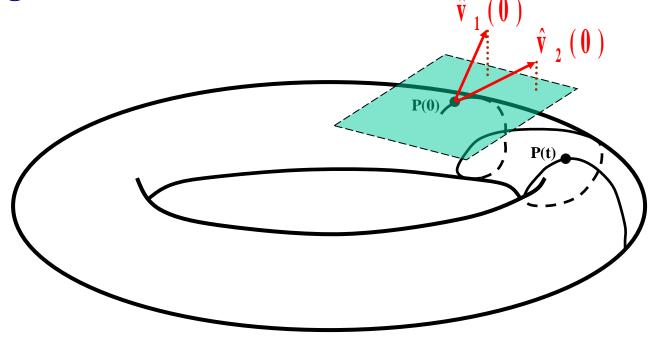


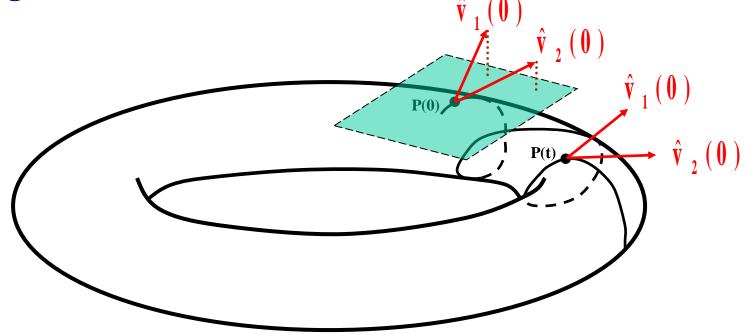


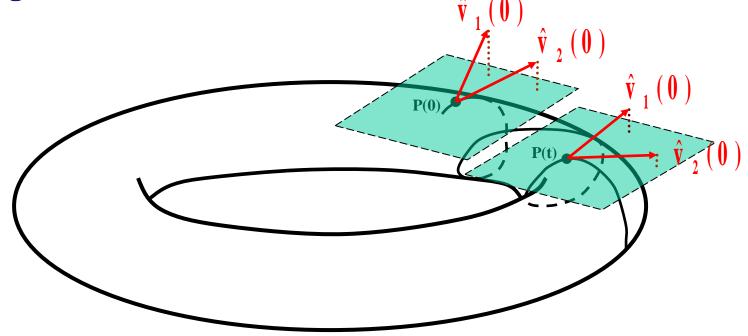










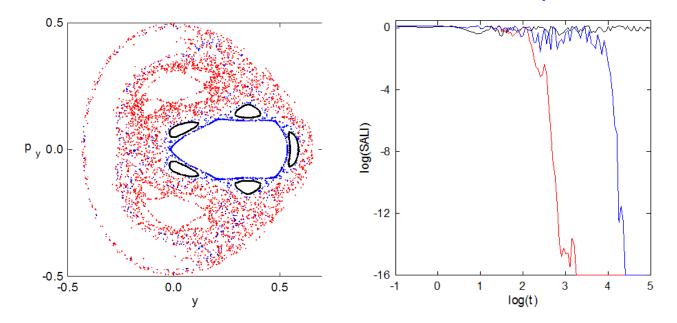


Applications – Hénon-Heiles system

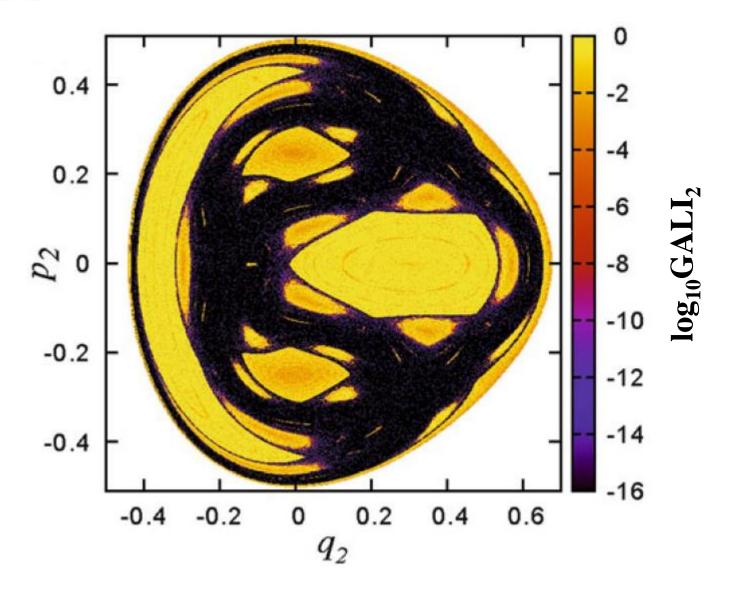
As an example, we consider the 2D Hénon-Heiles system:

$$H_2 = \frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}(x^2 + y^2) + x^2y - \frac{1}{3}y^3$$

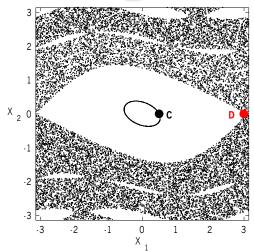
For E=1/8 we consider the orbits with initial conditions: Regular orbit, x=0, y=0.55, $p_x=0.2417$, $p_y=0$ Chaotic orbit, x=0, y=-0.016, $p_x=0.49974$, $p_y=0$ Chaotic orbit, x=0, y=-0.01344, $p_x=0.49982$, $p_y=0$

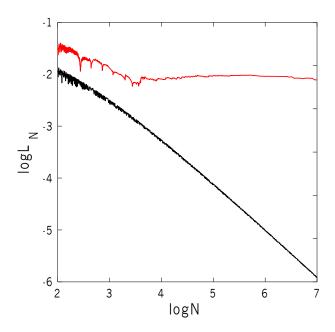


Applications – Hénon-Heiles system

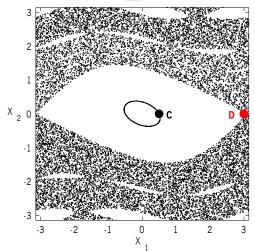


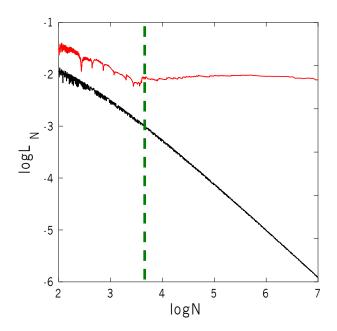
$$\begin{array}{lll} \mathbf{x}_{1}' &=& \mathbf{x}_{1} + \mathbf{x}_{2} \\ \mathbf{x}_{2}' &=& \mathbf{x}_{2} - \nu \sin(\mathbf{x}_{1} + \mathbf{x}_{2}) - \mu \left[\mathbf{1} - \cos(\mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{3} + \mathbf{x}_{4}) \right] \\ \mathbf{x}_{3}' &=& \mathbf{x}_{3} + \mathbf{x}_{4} \\ \mathbf{x}_{4}' &=& \mathbf{x}_{4} - \kappa \sin(\mathbf{x}_{3} + \mathbf{x}_{4}) - \mu \left[\mathbf{1} - \cos(\mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{3} + \mathbf{x}_{4}) \right] \end{array}$$
(mod 2 π)



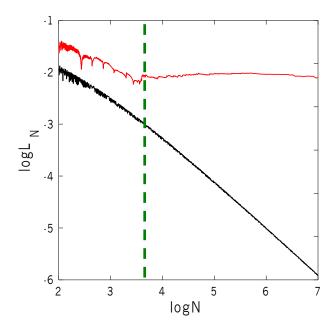


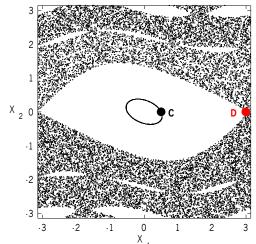
$$\begin{array}{lll} \mathbf{x}_{1}' &=& \mathbf{x}_{1} + \mathbf{x}_{2} \\ \mathbf{x}_{2}' &=& \mathbf{x}_{2} \cdot \nu \sin(\mathbf{x}_{1} + \mathbf{x}_{2}) \cdot \mu \left[\mathbf{1} \cdot \cos(\mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{3} + \mathbf{x}_{4}) \right] \\ \mathbf{x}_{3}' &=& \mathbf{x}_{3} + \mathbf{x}_{4} \\ \mathbf{x}_{4}' &=& \mathbf{x}_{4} \cdot \kappa \sin(\mathbf{x}_{3} + \mathbf{x}_{4}) \cdot \mu \left[\mathbf{1} \cdot \cos(\mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{3} + \mathbf{x}_{4}) \right] \end{array}$$
(mod 2 π)

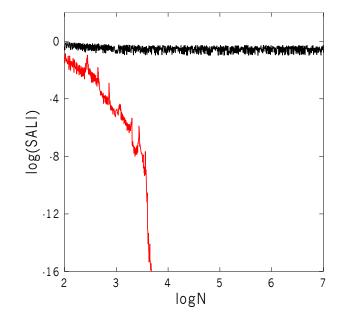




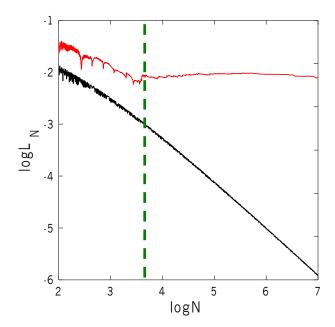
$$\begin{array}{lll} \mathbf{x}_{1}' &=& \mathbf{x}_{1} + \mathbf{x}_{2} \\ \mathbf{x}_{2}' &=& \mathbf{x}_{2} \cdot \nu \sin(\mathbf{x}_{1} + \mathbf{x}_{2}) \cdot \mu \left[\mathbf{1} \cdot \cos(\mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{3} + \mathbf{x}_{4}) \right] \\ \mathbf{x}_{3}' &=& \mathbf{x}_{3} + \mathbf{x}_{4} \\ \mathbf{x}_{4}' &=& \mathbf{x}_{4} \cdot \kappa \sin(\mathbf{x}_{3} + \mathbf{x}_{4}) \cdot \mu \left[\mathbf{1} \cdot \cos(\mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{3} + \mathbf{x}_{4}) \right] \end{array}$$
(mod 2 π)

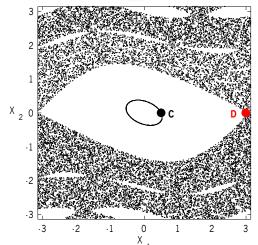


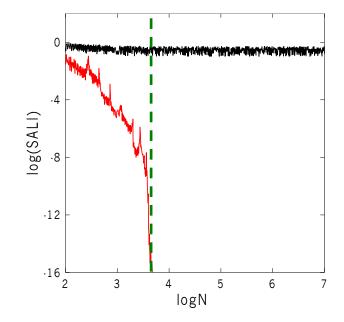




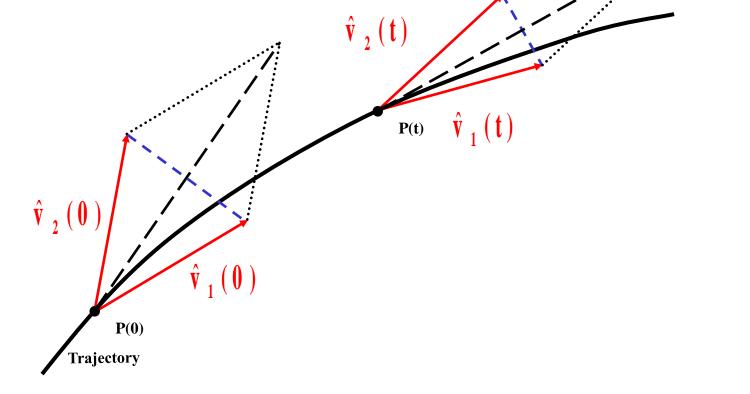
$$\begin{array}{lll} \mathbf{x}_{1}' &=& \mathbf{x}_{1} + \mathbf{x}_{2} \\ \mathbf{x}_{2}' &=& \mathbf{x}_{2} \cdot \nu \sin(\mathbf{x}_{1} + \mathbf{x}_{2}) \cdot \mu \left[\mathbf{1} \cdot \cos(\mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{3} + \mathbf{x}_{4}) \right] \\ \mathbf{x}_{3}' &=& \mathbf{x}_{3} + \mathbf{x}_{4} \\ \mathbf{x}_{4}' &=& \mathbf{x}_{4} \cdot \kappa \sin(\mathbf{x}_{3} + \mathbf{x}_{4}) \cdot \mu \left[\mathbf{1} \cdot \cos(\mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{3} + \mathbf{x}_{4}) \right] \end{array}$$
(mod 2 π)

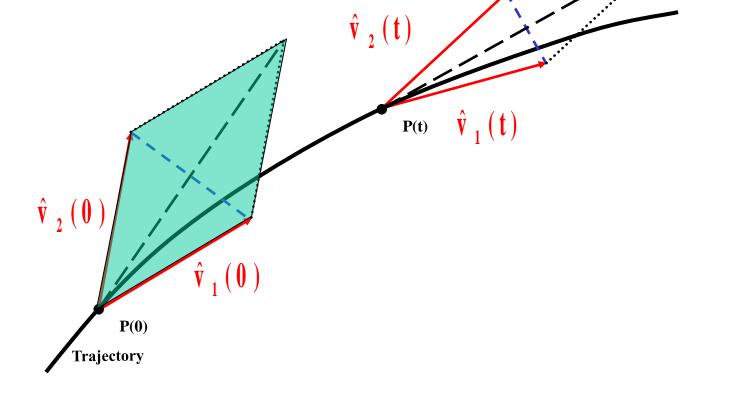


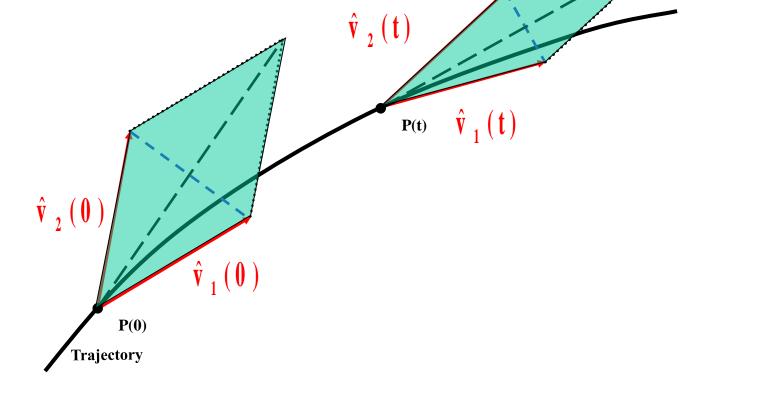


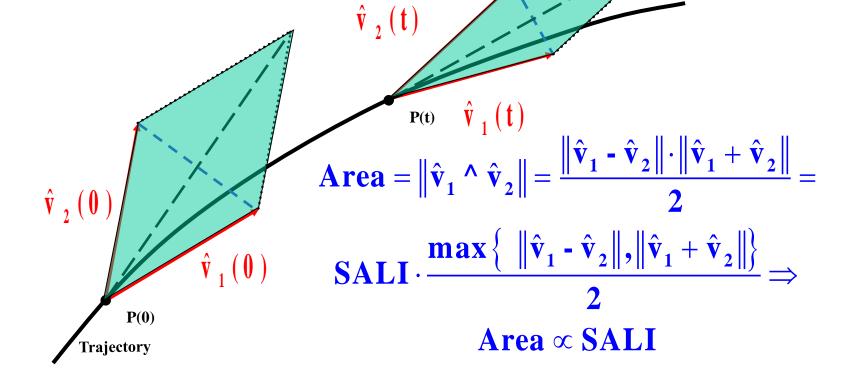


The Generalized ALignment Indices (GALIs) method









Definition of the GALI

In the case of an N degree of freedom Hamiltonian system or a 2N symplectic map we follow the evolution of

k deviation vectors with $2 \le k \le 2N$,

and define (Ch.S., Bountis, Antonopoulos, 2007, Physica D) the Generalized Alignment Index (GALI) of order k :

$$\mathbf{G} \mathbf{A} \mathbf{L} \mathbf{I}_{k}(\mathbf{t}) = \| \hat{\mathbf{v}}_{1}(\mathbf{t}) \wedge \hat{\mathbf{v}}_{2}(\mathbf{t}) \wedge \dots \wedge \hat{\mathbf{v}}_{k}(\mathbf{t}) \|$$

where

$$\hat{\mathbf{v}}_1(\mathbf{t}) = \frac{\mathbf{v}_1(\mathbf{t})}{\left\|\mathbf{v}_1(\mathbf{t})\right\|}$$

Behavior of the GALI_k for chaotic motion

GALI_k (2≤k≤2N) tends exponentially to zero with exponents that involve the values of the first k largest Lyapunov exponents $\sigma_1, \sigma_2, ..., \sigma_k$:

G A L I_k (**t**)
$$\propto$$
 e^{-[($\sigma_1 - \sigma_2$) + ($\sigma_1 - \sigma_3$) + ... + ($\sigma_1 - \sigma_k$)]t}

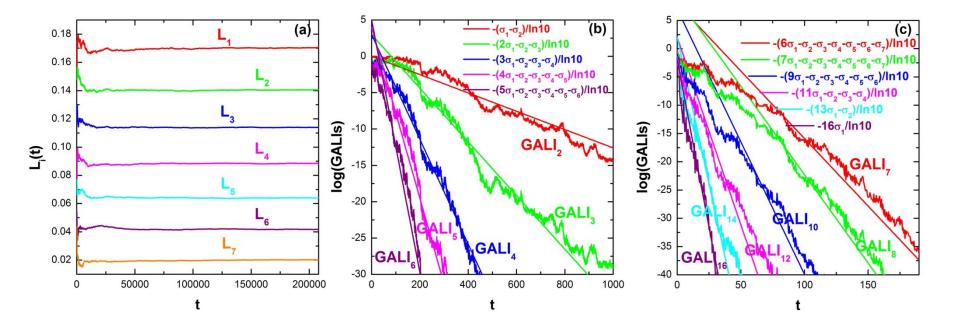
The above relation is valid even if some Lyapunov exponents are equal, or very close to each other.

Behavior of the GALI_k for chaotic motion

N particles Fermi-Pasta-Ulam (FPU) system:

$$\mathbf{H} = \frac{1}{2} \sum_{i=1}^{N} \mathbf{p}_{i}^{2} + \sum_{i=0}^{N} \left[\frac{1}{2} (\mathbf{q}_{i+1} - \mathbf{q}_{i})^{2} + \frac{\beta}{4} (\mathbf{q}_{i+1} - \mathbf{q}_{i})^{4} \right]$$

with fixed boundary conditions, N=8 and β =1.5.



Behavior of the GALI_k for regular motion

If the motion occurs on an s-dimensional torus with s \leq N then the behavior of GALI_k is given by (Ch.S., Bountis, Antonopoulos, 2008, Eur. Phys. J. Sp. Top.):

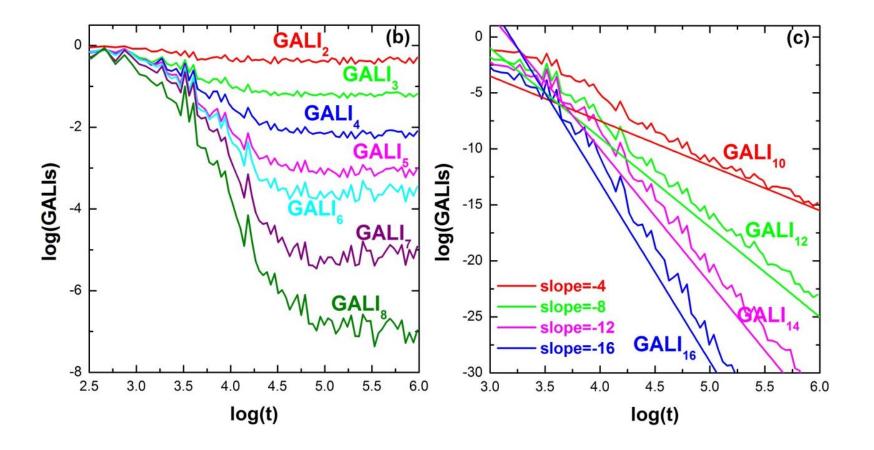
 $GALI_{k}(t) \propto \begin{cases} constant & \text{if } 2 \le k \le s \\ \frac{1}{t^{k-s}} & \text{if } s < k \le 2N - s \\ \frac{1}{t^{2(k-N)}} & \text{if } 2N - s < k \le 2N \end{cases}$

while in the common case with s=N we have :

$$GALI_{k}(t) \propto \begin{cases} constant & if \quad 2 \leq k \leq N \\ \\ \frac{1}{t^{2(k-N)}} & if \quad N < k \leq 2N \end{cases}$$

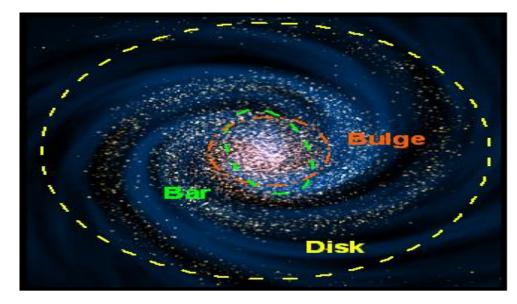
Behavior of the GALI_k for regular motion

N=8 FPU system



A time-dependent Hamiltonian system

Barred galaxiesNGC 1433NGC 2217



Barred galaxy model

The 3D bar rotates around its short *z*-axis (*x*: long axis and *y*: intermediate). The Hamiltonian that describes the motion for this model is:

$$H = \frac{1}{2}(p_x^2 + p_y^2 + p_z^2) + V(x, y, z) - \Omega_b(xp_y - yp_x) \equiv Energy$$

This model consists of the superposition of potentials describing an axisymmetric part and a bar component of the galaxy (Manos, Bountis, Ch.S., 2013, J. Phys. A).

a) Axisymmetric component:

i) Plummer sphere: ii) Miyamoto–Nagai disc: $V_{disc}(x, y, z) = -\frac{GM_D}{\sqrt{x^2 + y^2 + (A + \sqrt{B^2 + z^2})^2}}$ $V_{sphere}(x, y, z) = -\frac{GM_{s}}{\sqrt{x^{2} + v^{2} + z^{2} + z^{2}}}$ **b)** Bar component: $V_{bar}(x, y, z) = -\pi Gabc \frac{\rho_c}{n+1} \int_{\lambda}^{\infty} \frac{du}{\Delta(u)} (1-m^2(u))^{n+1}$, (Ferrers bar) $\rho_{c} = \frac{105}{32\pi} \frac{GM_{B}}{abc}$ where $m^{2}(u) = \frac{x^{2}}{a^{2}+u} + \frac{y^{2}}{b^{2}+u} + \frac{z^{2}}{c^{2}+u}, \quad \Delta^{2}(u) = (a^{2}+u)(b^{2}+u)(c^{2}+u),$ $n : \text{positive integer } (n = 2 \text{ for our model}), \quad \lambda: \text{ the unique positive solution of } m^{2}(\lambda) = 1$ Its density is: $\rho = \begin{cases} \rho_c (1-m^2)^n, \text{ for } m \le 1\\ 0, \text{ for } m > 1 \end{cases}$, where $m^2 = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}, a > b > c \text{ and } n = 2.$

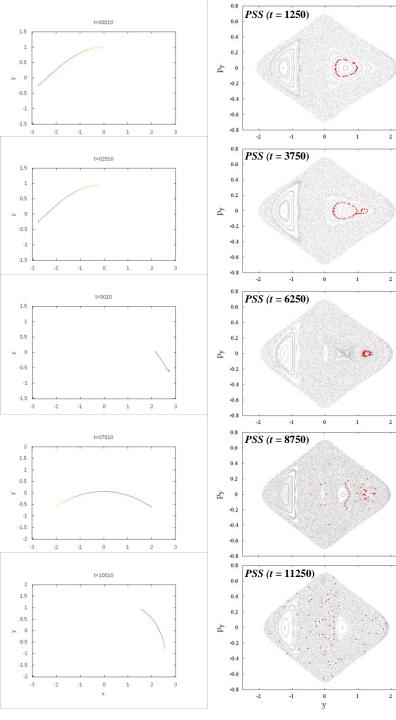
Time-dependent barred galaxy model

The 3D bar rotates around its short *z*-axis (*x*: long axis and *y*: intermediate). The Hamiltonian that describes the motion for this model is:

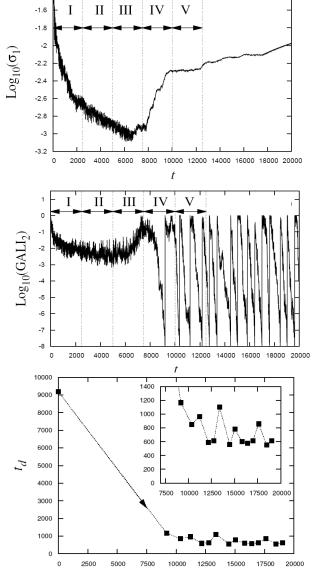
$$H = \frac{1}{2}(p_x^2 + p_y^2 + p_z^2) + V(x, y, z, t) - \Omega_b(xp_y - yp_x) \equiv Energy$$

This model consists of the superposition of potentials describing an axisymmetric part and a bar component of the galaxy (Manos, Bountis, Ch.S., 2013, J. Phys. A).

 $M_{S} + M_{B}(t) + M_{D}(t) = 1$, with $M_{B}(t) = M_{B}(0) + \alpha t$ a) Axisymmetric component: ii) Miyamoto-Nagai disc: i) Plummer sphere: $V_{disc}(x, y, z) = -\frac{GM_{D}(t)}{\sqrt{x^{2} + y^{2} + (A + \sqrt{B^{2} + z^{2}})^{2}}}$ $V_{sphere}(x, y, z) = -\frac{GM_{s}}{\sqrt{x^{2} + v^{2} + z^{2} + \varepsilon^{2}}}$ **b)** Bar component: $V_{bar}(x, y, z) = -\pi Gabc \frac{\rho_c}{n+1} \int_{\lambda}^{\infty} \frac{du}{\Lambda(u)} (1-m^2(u))^{n+1}$, (Ferrers bar) (Ferrers bar) $\rho_{c} = \frac{105}{32\pi} \frac{GM_{B}(t)}{abc}$ where $m^{2}(u) = \frac{x^{2}}{a^{2}+u} + \frac{y^{2}}{b^{2}+u} + \frac{z^{2}}{c^{2}+u}$, $\Delta^{2}(u) = (a^{2}+u)(b^{2}+u)(c^{2}+u)$, n: positive integer (n = 2 for our model), λ : the unique positive solution of $m^{2}(\lambda) = 1$ Its density is: $\rho = \begin{cases} \rho_c (1 - m^2)^n, & \text{for } m \le 1\\ 0, & \text{for } m > 1 \end{cases}, \text{ where } m^2 = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}, a > b > c \text{ and } n = 2. \end{cases}$

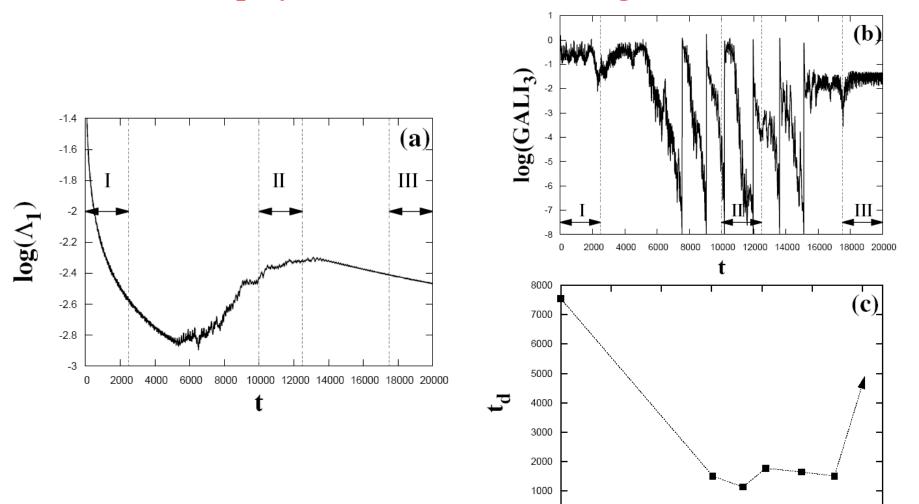


Time-dependent 2D barred galaxy model



Time-dependent 3D barred galaxy model

Interplay between chaotic and regular motion



Numerical Integration of Equations of Motion and Variational Equations

Efficient integration of variational equations

Consider an N degree of freedom autonomous Hamiltonian system having a Hamiltonian function of the form:

$$H(\vec{q}, \vec{p}) = \frac{1}{2} \sum_{i=1}^{N} p_i^2 + V(\vec{q})$$

with $\vec{q} = (q_1(t), q_2(t), \dots, q_N(t)) \ \vec{p} = (p_1(t), p_2(t), \dots, p_N(t))$ being respectively the coordinates and momenta.

The time evolution of an orbit is governed by the Hamilton's equations of motion

$$\vec{q} = \vec{p} \\ \dot{\vec{p}} = -\frac{\partial V}{\partial \vec{q}}$$

Variational Equations

The time evolution of a deviation vector

 $\vec{w}(t) = (\delta q_1(t), \delta q_2(t), \dots, \delta q_N(t), \delta p_1(t), \delta p_2(t), \dots, \delta p_N(t))$ from a given orbit is governed by the variational equations:

$$\vec{\delta q} = \vec{\delta p}$$

$$\dot{\vec{\delta p}} = -\mathbf{D}^2 \mathbf{V}(\vec{q}(t))\vec{\delta q}$$

where $\mathbf{D}^2 \mathbf{V}(\vec{q}(t))_{jk} = \frac{\partial^2 V(\vec{q})}{\partial q_j \partial q_k}\Big|_{\vec{q}(t)}$, $j, k = 1, 2, \dots, N$.

The variational equations are the equations of motion of the time dependent tangent dynamics Hamiltonian (TDH) function

$$H_V(\vec{\delta q}, \vec{\delta p}; t) = \frac{1}{2} \sum_{j=1}^N \delta p_i^2 + \frac{1}{2} \sum_{j,k}^N \mathbf{D}^2 \mathbf{V}(\vec{q}(t))_{jk} \delta q_j \delta q_k$$

Autonomous Hamiltonian systems

As an example, we consider the Hénon-Heiles system:

$$H_2 = \frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}(x^2 + y^2) + x^2y - \frac{1}{3}y^3$$

Hamilton's equations of motion: -

$$\begin{cases} \dot{x} = p_x \\ \dot{y} = p_y \\ \dot{p}_x = -x - 2xy \\ \dot{p}_y = y^2 - x^2 - y \end{cases}$$

Variational equations:

$$\begin{cases} \dot{\delta x} &= \delta p_x \\ \dot{\delta y} &= \delta p_y \\ \dot{\delta p}_x &= -(1+2y)\delta x - 2x\delta y \\ \dot{\delta p}_y &= -2x\delta x + (-1+2y)\delta y \end{cases}$$

Integration of the variational equations

We use two general-purpose numerical integration algorithms for the integration of the whole set of equations:

$$\begin{cases} \dot{x} = p_x \\ \dot{y} = p_y \\ \dot{p}_x = -x - 2xy \\ \dot{p}_y = y^2 - x^2 - y \\ \dot{\delta x} = \delta p_x \\ \dot{\delta y} = \delta p_y \\ \dot{\delta p}_x = -(1 + 2y)\delta x - 2x\delta y \\ \dot{\delta p}_y = -2x\delta x + (-1 + 2y)\delta y \end{cases}$$

a) the **DOP853** integrator (Hairer et al. 1993, http://www.unige.ch/~hairer/software.html), which is an explicit non-symplectic Runge-Kutta integration scheme of order 8,

b) the **TIDES** integrator (Barrio 2005, http://gme.unizar.es/software/tides), which is based on a Taylor series approximation

$$\boldsymbol{y}(t_i + \tau) \simeq \boldsymbol{y}(t_i) + \tau \frac{\mathrm{d}\boldsymbol{y}(t_i)}{\mathrm{d}t} + \frac{\tau^2}{2!} \frac{\mathrm{d}^2 \boldsymbol{y}(t_i)}{\mathrm{d}t^2} + \ldots + \frac{\tau^n}{n!} \frac{\mathrm{d}^n \boldsymbol{y}(t_i)}{\mathrm{d}t^n}$$

for the solution of system

$$\frac{\mathrm{d}\boldsymbol{y}(t)}{\mathrm{d}t} = \boldsymbol{f}(\boldsymbol{y}(t))$$

Symplectic Integration schemes

Formally the solution of the Hamilton's equations of motion can be written as: $\frac{d\vec{X}}{dt} = \left\{H, \vec{X}\right\} = L_H \vec{X} \Longrightarrow \vec{X}(t) = \sum_{n \ge 0} \frac{t^n}{n!} L_H^n \vec{X} = e^{tL_H} \vec{X}$

where \vec{X} is the full coordinate vector and L_H the Poisson operator:

$$L_{H}f = \sum_{j=1}^{N} \left\{ \frac{\partial H}{\partial p_{j}} \frac{\partial f}{\partial q_{j}} - \frac{\partial H}{\partial q_{j}} \frac{\partial f}{\partial p_{j}} \right\}$$

If the Hamiltonian H can be split into two integrable parts as H=A+B, a symplectic scheme for integrating the equations of motion from time t to time t+ τ consists of approximating the operator $e^{\tau L_{H}}$ by

$$\mathbf{e}^{\tau \mathbf{L}_{\mathrm{H}}} = \mathbf{e}^{\tau (\mathbf{L}_{\mathrm{A}} + \mathbf{L}_{\mathrm{B}})} \approx \prod_{i=1}^{\mathbf{j}} \mathbf{e}^{\mathbf{c}_{i} \tau \mathbf{L}_{\mathrm{A}}} \mathbf{e}^{\mathbf{d}_{i} \tau \mathbf{L}_{\mathrm{B}}}$$

for appropriate values of constants c_i, d_i.

So the dynamics over an integration time step τ is described by a series of successive acts of Hamiltonians A and B.

Symplectic Integrator SABA₂C

We use a symplectic integration scheme developed for Hamiltonians of the form $H=A+\varepsilon B$ where A, B are both integrable and ε a parameter. The operator $e^{\tau L_{H}}$ can be approximated by the symplectic integrator (Laskar & Robutel, 2001, Cel. Mech. Dyn. Astr.):

 $\frac{\text{SABA}_{2}}{\text{with } c_{1} = \frac{(3 - \sqrt{3})}{6}, c_{2} = \frac{\sqrt{3}}{3}, d_{1} = \frac{1}{2}.} e^{c_{1}\tau L_{A}} e^{d_{1}\tau L_{EB}} e^{c_{1}\tau L_{A}} e^{d_{1}\tau L_{EB}} e^{c_{1}\tau L_{A}}$

The integrator has only positive steps and its error is of order $O(\tau^4\epsilon + \tau^2\epsilon^2)$.

In the case where *A* is quadratic in the momenta and *B* depends only on the positions the method can be improved by introducing a corrector $C=\{\{A,B\},B\}$, having a small negative step: $-\tau^{3}\epsilon^{2}\frac{c}{2}L_{\{\{A,B\},B\}}$ with $c = \frac{(2-\sqrt{3})}{24}$. Thus the full integrator scheme becomes: $SABAC_{2} = C$ ($SABA_{2}$) *C* and its error is of order O($\tau^{4}\epsilon + \tau^{4}\epsilon^{2}$).

Use symplectic integration schemes for the whole set of equations (Ch.S., Gerlach, 2010, PRE)

We apply the SABAC₂ integrator scheme to the Hénon-Heiles system (with $\epsilon=1$) by using the splitting:

$$A = \frac{1}{2}(p_x^2 + p_y^2), \qquad B = \frac{1}{2}(x^2 + y^2) + x^2y - \frac{1}{3}y^3,$$

with a corrector term which corresponds to the Hamiltonian function:

$$C = \{\{A, B\}, B\} = (x + 2xy)^{2} + (x^{2} - y^{2} + y)^{2}$$

We approximate the dynamics by the act of Hamiltonians A, B and C, which correspond to the symplectic maps:

$$e^{\tau L_A} : \begin{cases} x' = x + p_x \tau \\ y' = y + p_y \tau \\ p'_x = p_x \\ p'_y = p_y \end{cases}, e^{\tau L_C} : \begin{cases} x' = x \\ y' = y \\ p'_x = p_x - 2x(1 + 2x^2 + 6y + 2y^2) \tau \\ p'_x = p_x - 2x(1 + 2x^2 + 6y + 2y^2) \tau \\ p'_y = p_y - 2(y - 3y^2 + 2y^3 + 3x^2 + 2x^2y) \tau \\ p'_y = p_y - 2(y - 3y^2 + 2y^3 + 3x^2 + 2x^2y) \tau \end{cases}$$

Let $\vec{u} = (x, y, p_x, p_y, \delta x, \delta y, \delta p_x, \delta p_y)$

The system of the Hamilton's equations of motion and the variational equations is split into two integrable systems which correspond to Hamiltonians A and B.

 $\dot{x} = p_x$ $\dot{y} = p_y$ $\dot{p}_x = -x - 2xy$ $\dot{p}_y = y^2 - x^2 - y$ $\dot{\delta x} = \delta p_x$ $\dot{\delta y} = \delta p_y$ $\dot{\delta p}_x = -(1 + 2y)\delta x - 2x\delta y$ $\dot{\delta p}_y = -2x\delta x + (-1 + 2y)\delta y$

Let $\vec{u} = (x, y, p_x, p_y, \delta x, \delta y, \delta p_x, \delta p_y)$

The system of the Hamilton's equations of motion and the variational equations is split into two integrable systems which correspond to Hamiltonians A and B.

$$\begin{split} \dot{x} &= p_{x} \\ \dot{y} &= p_{y} \\ \dot{p}_{x} &= -x - 2xy \\ \dot{p}_{y} &= y^{2} - x^{2} - y \end{split} \xrightarrow{A(\vec{p})} \xrightarrow{\dot{x} &= p_{x} \\ \dot{y} &= p_{y} \\ \dot{p}_{x} &= 0 \\ \dot{p}_{y} &= 0 \\ \delta x &= \delta p_{x} \\ \dot{\delta y} &= \delta p_{y} \\ \dot{\delta y} &= \delta p_{y} \\ \dot{\delta p}_{x} &= -(1 + 2y)\delta x - 2x\delta y \\ \dot{\delta p}_{y} &= -2x\delta x + (-1 + 2y)\delta y \end{split} \xrightarrow{\dot{x} &= p_{x} \\ \dot{y} &= p_{y} \\ \dot{p}_{x} &= 0 \\ \dot{\delta p}_{y} &= 0 \\ \dot{\delta$$

Let
$$\vec{u} = (x, y, p_x, p_y, \delta x, \delta y, \delta p_x, \delta p_y)$$

The system of the Hamilton's equations of motion and the variational equations is split into two integrable systems which correspond to Hamiltonians A and B.

$$\begin{array}{c} x &= p_{x} \\ \dot{y} &= p_{y} \\ \dot{y} &= p_{y} \\ \dot{p}_{x} &= -x - 2xy \\ \dot{p}_{y} &= y^{2} - x^{2} - y \end{array} \xrightarrow{A(\vec{p})} \begin{array}{c} \dot{x} &= p_{x} \\ \dot{y} &= p_{y} \\ \dot{p}_{x} &= 0 \\ \dot{p}_{y} &= 0 \\ \delta x &= \delta p_{x} \\ \dot{\delta y} &= \delta p_{y} \\ \dot{\delta y} &= \delta p_{y} \\ \dot{\delta y} &= \delta p_{y} \\ \dot{\delta p}_{x} &= -(1 + 2y)\delta x - 2x\delta y \\ \dot{\delta p}_{y} &= -2x\delta x + (-1 + 2y)\delta y \end{array} \right\} \Rightarrow \frac{d\vec{u}}{dt} = L_{AV}\vec{u} \\ \left(\begin{array}{c} B(\vec{q}) & \overset{\dot{x}}{p} = 0 \\ \dot{p}_{x} &= -x - 2xy \\ \dot{p}_{y} &= y^{2} - x^{2} - y \\ \dot{\delta x} &= 0 \\ \dot{\delta y} &= 0 \\ \dot{\delta p}_{x} &= -(1 + 2y)\delta x - 2x\delta y \\ \dot{\delta p}_{y} &= -2x\delta x + (-1 + 2y)\delta y \end{array} \right\} \Rightarrow \frac{d\vec{u}}{dt} = L_{BV}\vec{u}$$

Let
$$\vec{u} = (x, y, p_x, p_y, \delta x, \delta y, \delta p_x, \delta p_y)$$

The system of the Hamilton's equations of motion and the variational equations is split into two integrable systems which correspond to Hamiltonians A and B.

$$\begin{array}{c} x = p_{x} \\ \dot{y} = p_{y} \\ \dot{y} = p_{y} \\ \dot{p}_{x} = -x - 2xy \\ \dot{p}_{y} = y^{2} - x^{2} - y \end{array} \xrightarrow{A\left(\vec{p}\right)} \xrightarrow{\dot{x} = p_{x} \\ \dot{y} = p_{y} \\ \dot{p}_{x} = 0 \\ \dot{\delta}x = \delta p_{x} \\ \dot{\delta}y = \delta p_{y} \\ \dot{\delta}y = \delta p_{y} \\ \dot{\delta}y = \delta p_{y} \\ \dot{\delta}p_{x} = -(1 + 2y)\delta x - 2x\delta y \\ \dot{\delta}p_{y} = y^{2} - x^{2} - y \\ \dot{\delta}x = 0 \\ \dot{\delta}y = -(1 + 2y)\delta x - 2x\delta y \\ \dot{\delta}y = \delta x \\ \dot{\delta}y' = \delta x \\ \dot{\delta}y' = \delta y \\ \dot{\delta}p'_{x} = \delta p_{x} - [(1 + 2y)\delta x + 2x\delta y]\tau \\ \dot{\delta}p'_{y} = \delta p_{y} + [-2x\delta x + (-1 + 2y)\delta y]\tau \end{aligned}$$

So any symplectic integration scheme used for solving the Hamilton's equations of motion, which involves the action of Hamiltonians A, B and C, can be extended in order to integrate simultaneously the variational equations.

$$e^{\tau L_A} : \begin{cases} x' = x + p_x \tau \\ y' = y + p_y \tau \\ p'_x = p_x \\ p'_y = p_y \end{cases}$$

$$e^{\tau L_B} : \begin{cases} x' = x \\ y' = y \\ p'_x = p_x - x(1+2y)\tau \\ p'_y = p_y + (y^2 - x^2 - y)\tau \end{cases}$$

$$e^{\tau L_C} : \begin{cases} x' = x \\ y' = y \\ p'_x = p_x - 2x(1 + 2x^2 + 6y + 2y^2)\tau \\ p'_y = p_y - 2(y - 3y^2 + 2y^3 + 3x^2 + 2x^2y)\tau \end{cases}$$

So any symplectic integration scheme used for solving the Hamilton's equations of motion, which involves the action of Hamiltonians A, B and C, can be extended in order to integrate simultaneously the variational equations. $(x' = x + p_x \tau)$

$$e^{\tau L_A} : \begin{cases} x' = x + p_x \tau \\ y' = y + p_y \tau \\ p'_x = p_x \\ p'_y = p_y \end{cases} e^{\tau L_{AV}} : \begin{cases} y' = y + p_y \tau \\ px' = p_x \\ y' = p_y \\ \delta x' = \delta x + \delta p_x \tau \\ \delta y' = \delta y + \delta p_y \tau \\ \delta p'_x = \delta p_x \\ \delta p'_y = \delta p_y \end{cases}$$

$$e^{\tau L_B} : \begin{cases} x' = x \\ y' = y \\ p'_x = p_x - x(1+2y)\tau \\ p'_y = p_y + (y^2 - x^2 - y)\tau \end{cases}$$

$$e^{\tau L_C} : \begin{cases} x' = x \\ y' = y \\ p'_x = p_x - 2x(1 + 2x^2 + 6y + 2y^2)\tau \\ p'_y = p_y - 2(y - 3y^2 + 2y^3 + 3x^2 + 2x^2y)\tau \end{cases}$$

So any symplectic integration scheme used for solving the Hamilton's equations of motion, which involves the action of Hamiltonians A, B and C, can be extended in order to integrate simultaneously the variational equations. $(x') = x + p_{\pi}\tau$

$$e^{\tau L_{A}} : \begin{cases} x' = x + p_{x}\tau \\ y' = y + p_{y}\tau \\ p'_{x} = p_{x} \\ p'_{y} = p_{y} \end{cases} e^{\tau L_{AV}} : \begin{cases} x' = x \\ y' = y \\ \delta x' = \delta x + \delta p_{x}\tau \\ \delta y' = \delta y + \delta p_{y}\tau \\ \delta p'_{x} = \delta p_{x} \\ \delta p'_{y} = \delta p_{y} \end{cases} e^{\tau L_{BV}} : \begin{cases} x' = x \\ y' = y \\ p'_{x} = p_{x} - x(1 + 2y)\tau \\ \delta x' = \delta x \\ \delta y' = \delta p_{y} \end{cases} e^{\tau L_{BV}} : \begin{cases} x' = x \\ y' = y \\ \delta x' = \delta x \\ \delta y' = \delta y \\ \delta y' = \delta p_{x} - [(1 + 2y)\delta x + 2x\delta y]\tau \\ \delta p'_{y} = p_{y} + (y^{2} - x^{2} - y)\tau \end{cases}$$

$$e^{\tau L_C} : \begin{cases} x' = x \\ y' = y \\ p'_x = p_x - 2x(1 + 2x^2 + 6y + 2y^2)\tau \\ p'_y = p_y - 2(y - 3y^2 + 2y^3 + 3x^2 + 2x^2y)\tau \end{cases}$$

So any symplectic integration scheme used for solving the Hamilton's equations of motion, which involves the action of Hamiltonians A, B and C, can be extended in order to integrate simultaneously the variational equations. $(x') = x + p_r \tau$

$$e^{\tau L_{A}} : \begin{cases} x' = x + p_{x}\tau \\ y' = y + p_{y}\tau \\ p'_{x} = p_{x} \\ p'_{y} = p_{y} \end{cases} e^{\tau L_{AV}} : \begin{cases} x' = x \\ y' = y \\ b'_{y} = \delta x + \delta p_{x}\tau \\ \delta y' = \delta y + \delta p_{y}\tau \\ \delta y' = \delta p_{y} \end{cases} e^{\tau L_{BV}} : \begin{cases} x' = x \\ y' = y \\ \delta y' = \delta p_{x} \\ \delta y' = \delta p_{x} \\ \delta y' = \delta p_{x} \end{cases} e^{\tau L_{BV}} : \begin{cases} x' = x \\ y' = y \\ p'_{y} = p_{y} + (y^{2} - x^{2} - y)\tau \\ \delta y' = \delta p_{x} \\ \delta y' = \delta p_{x} \\ \delta y' = \delta p_{x} - [(1 + 2y)\delta x + 2x\delta y]\tau \\ \delta y' = \delta p_{y} + [-2x\delta x + (-1 + 2y)\delta y]\tau \\ \delta y' = \delta p_{y} + [-2x\delta x + (-1 + 2y)\delta y]\tau \\ \delta y' = \delta p_{y} - 2(y - 3y^{2} + 2y^{3} + 3x^{2} + 2x^{2}y)\tau \end{cases} e^{\tau L_{BV}} : \begin{cases} x' = x \\ y' = y \\ p'_{y} = p_{y} - 2(y - 3y^{2} + 2y^{3} + 3x^{2} + 2x^{2}y)\tau \\ \delta y' = \delta p_{x} - 2[(1 + 6x^{2} + 2y^{2} + 6y)\delta x + (-1 + 2y)\delta y]\tau \\ \delta y' = \delta p_{y} - 2[(1 + 6x^{2} + 2y^{2} + 6y)\delta x + (-1 + 2y)\delta y]\tau \end{cases}$$

Main References I

- Hamiltonian systems and symplectic maps
 - ✓ Lieberman A. J. & Lichtenberg M. A. (1992) Regular and Chaotic Dynamics, Springer
 - ✓ Čvitanović P., Artuso R., Dahlqvist P., Mainieri R., Tanner G., Vattay G., Whelan N. & Wirzba A., (2015) Chaos – Classical and Quantum, version 15, http://chaosbook.org/
- Symplectic integrators and Tangent Map method
 - Ch.S., Gerlach E (2010) PRE, 82, 036704
 - ✓ Gerlach E, Ch.S. (2011) Discr. Cont. Dyn. Sys.-Supp., 2011, 475
 - ✓ Gerlach E, Eggl S, Ch.S. (2012) IJBC, 22, 1250216
 - ✓ Ch.S., Gerlach E, Bodyfelt J, Papamikos G, Eggl S (2014) Phys. Lett. A, 378, 1809
 - ✓ Gerlach E, Meichsner J, Ch.S. (2016) Eur. Phys. J. Sp. Top., 225, 1103
 - ✓ Senyange B, Ch.S. (2018) Eur. Phys. J. Sp. Top., 227, 625
 - ✓ Danieli C, Many Manda B, Mithun T, Ch.S. (2019) MinE, 1, 447

Main References II

- The color and rotation (CR) method
 - ✓ Patsis P. A. & Zachilas L (1994) Int. J. Bif. Chaos, 4, 1399
 - ✓ Katsanikas M & Patsis P A (2011) Int. J. Bif. Chaos, 21, 467
 - ✓ Katsanikas M, Patsis P A & Contopoulos G. (2011) Int. J. Bif. Chaos, 21, 2321
- the 3D phase space slices (3PSS) technique
 - ✓ Richter M, Lange S, Backer A & Ketzmerick R (2014), Phys. Rev. E 89, 022902
 - ✓ Lange S, Richter M, Onken F, Backer A & Ketzmerick R (2014), Chaos 24, 024409
 - ✓ Onken F, Lange S, Ketzmerick R & Backer A (2016), Chaos 26, 063124
- Frequency Analysis
 - ✓ Laskar J (1990) Icarus, 88, 266
 - ✓ Laskar J, Froeschle C & Celletti A (1992) Physica D, 56, 253
 - ✓ Laskar J (1993) Physica D, 67, 257
 - ✓ Bartolini R, Bazzani A, Giovannozzi M, Scandale W & Todesco E (1996) Part. Accel. 52, 147
 - ✓ Laskar J (1999) in Hamiltonian systems with three or more degrees of freedom (ed. Simo C / Plenum Press) p 134
- Lyapunov exponents
 - ✓ Oseledec V I (1968) Trans. Moscow Math. Soc., 19, 197
 - ✓ Benettin G, Galgani L, Giorgilli A & Strelcyn J-M (1980) Meccanica, March, 9
 - ✓ Benettin G, Galgani L, Giorgilli A & Strelcyn J-M (1980) Meccanica, March, 21
 - ✓ Wolf A, Swift J B, Swinney H L &Vastano J A (1985) Physica D, 16, 285
 - ✓ Ch.S. (2010) Lect. Notes Phys., 790, 63

Main References III

- 0-1 test
 - ✓ Gottwald G A & Melbourne I (2004) Proc. R. Soc. A, 460, 603
 - ✓ Gottwald G A & Melbourne I (2005) Physica D, 212, 100
 - ✓ Gottwald G A & Melbourne I (2009) SIAM J. Appl. Dyn., 8, 129
 - ✓ Gottwald G A & Melbourne I (2016) Lect. Notes Phys., 915, 221
- FLI OFLI OFLI2
 - ✓ Froeschle C, Lega E & Gonczi R (1997) Celest. Mech. Dyn. Astron., 67, 41
 - ✓ Guzzo M, Lega E & Froeschle C (2002) Physica D, 163, 1
 - ✓ Fouchard M, Lega E, Froeschle C & Froeschle C (2002) Celest. Mech. Dyn. Astron., 83, 205
 - ✓ Barrio R (2005) Chaos Sol. Fract., 25, 71
 - ✓ Barrio R (2006) Int. J. Bif. Chaos, 16, 2777
 - ✓ Lega E, Guzzo M & Froeschle C (2016) Lect. Notes Phys., 915, 35
 - ✓ Barrio R (2016) Lect. Notes Phys., 915, 55
- MEGNO
 - ✓ Cincotta P M & Simo (2000) Astron. Astroph. Suppl. Ser., 147, 205
 - ✓ Cincotta P M, Giordano C M & Simo C (2003) Physica D, 182, 151
 - ✓ Cincotta P M, & Giordano C M (2016) Lect. Notes Phys., 915, 93
- RLI
 - ✓ Sandor Zs, Erdi B & Efthymiopoulos C (2000) Celest. Mech. Dyn. Astron., 78, 113
 - ✓ Sandor Zs, Erdi B, Szell A & Funk B (2004) Celest. Mech. Dyn. Astron., 90 127
 - ✓ Sandor Zs & Maffione N (2016) Lect. Notes Phys., 915, 183

Main References IV

• SALI

- ✓ Ch.S. (2001) J. Phys. A, 34, 10029
- Ch.S., Antonopoulos Ch, Bountis T C & Vrahatis M N (2003) Prog. Theor. Phys. Supp., 150, 439
- Ch.S., Antonopoulos Ch, Bountis T C & Vrahatis M N (2004) J. Phys. A, 37, 6269
- ✓ Bountis T & Ch.S. (2006) Nucl. Inst Meth. Phys Res. A, 561, 173
- ✓ Boreaux J, Carletti T, Ch.S. &Vittot M (2012) Com. Nonlin. Sci. Num. Sim., 17, 1725
- ✓ Boreaux J, Carletti T, Ch.S., Papaphilippou Y & Vittot M (2012) Int. J. Bif. Chaos, 22, 1250219
- GALI
 - ✓ Ch.S., Bountis T C & Antonopoulos Ch (2007) Physica D, 231, 30
 - ✓ Ch.S., Bountis T C & Antonopoulos Ch (2008) Eur. Phys. J. Sp. Top., 165, 5
 - ✓ Gerlach E, Eggl S & Ch.S. (2012) Int. J. Bif. Chaos, 22, 1250216
 - ✓ Manos T, Ch.S. & Antonopoulos Ch (2012) Int. J. Bif. Chaos, 22, 1250218
 - ✓ Manos T, Bountis T & Ch.S. (2013) J. Phys. A, 46, 254017
- Reviews on SALI and GALI
 - ✓ Bountis T C & Ch.S. (2012) 'Complex Hamiltonian Dynamics', Chapter 5, Springer Series in Synergetics
 - ✓ Ch.S. & Manos T (2016) Lect. Notes Phys., 915, 129